On Asymptotic Behavior of Regularly Varying Moments for Discrete Laws

被引:0
|
作者
Simic, Slavko [1 ]
机构
[1] SANU, Math Inst, Belgrade 11000, Serbia
关键词
Entire functions of finite order; Power series distributions; Regular variation;
D O I
10.1080/03610920802171590
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a discrete law F and large n, we investigate the asymptotic relation EX(n)(u)l(X-n) similar to C-mu(EXn)(mu)l(EXn), mu epsilon (a, b), C-mu > 0 (EXn -> infinity), where l(.) is an arbitrary slowly varying function. Then we prove that regularly varying moments for Power Series Distributions, generated by an entire function of finite order, satisfy the above relation with C-mu = 1 for each mu epsilon (0, infinity).
引用
收藏
页码:130 / 137
页数:8
相关论文
共 50 条