Levy flights in nonhomogeneous media: Distributed-order fractional equation approach

被引:25
|
作者
Srokowski, Tomasz [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-30060 Krakow, Poland
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevE.78.031135
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A jumping process, defined in terms of the Levi distributed jumping size and the Poissonian, position-dependent waiting time with the algebraic jumping rate, is discussed on the assumption that parameters of both distributions are themselves random variables which are determined from given probability distributions. The fractional equation for the distributed Levy order parameter mu is derived and solved. The solution is of the form of a combination of the Fox functions and simple scaling is lacking. The problem of accelerated diffusion is also discussed. The case of the distributed waiting time parameter theta is similarly solved and the solution offers a possibility to manage processes which are characterized by more general forms of the jumping rate, not only algebraic. Moreover, we mention a possibility that the parameters mu and theta are mutually dependent.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fractional Fokker-Planck equation for Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [2] FRACTIONAL DIFFUSION EQUATION WITH DISTRIBUTED-ORDER CAPUTO DERIVATIVE
    Kubica, Adam
    Ryszewska, Katarzyna
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (02) : 195 - 243
  • [3] A distributed-order fractional stochastic differential equation driven by Levy noise: Existence, uniqueness, and a fast EM scheme
    Dong, Jincheng
    Du, Ning
    Yang, Zhiwei
    CHAOS, 2023, 33 (02)
  • [4] Distributed-order fractional kinetics
    Sokolov, IM
    Chechkin, AV
    Klafter, J
    ACTA PHYSICA POLONICA B, 2004, 35 (04): : 1323 - 1341
  • [5] On a fractional distributed-order oscillator
    Atanackovic, TM
    Budincevic, M
    Pilipovic, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30): : 6703 - 6713
  • [6] A fractional diffusion equation to describe Levy flights
    Chaves, AS
    PHYSICS LETTERS A, 1998, 239 (1-2) : 13 - 16
  • [7] HIGH ORDER ALGORITHMS FOR THE FRACTIONAL SUBSTANTIAL DIFFUSION EQUATION WITH TRUNCATED LEVY FLIGHTS
    Chen, Minghua
    Deng, Weihua
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A890 - A917
  • [8] Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
    Aminikhah, Hossein
    Sheikhani, Amir Hosein Refahi
    Houlari, Tahereh
    Rezazadeh, Hadi
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (03) : 760 - 765
  • [9] Numerical Solution of the Distributed-Order Fractional Bagley-Torvik Equation
    Hossein Aminikhah
    Amir Hosein Refahi Sheikhani
    Tahereh Houlari
    Hadi Rezazadeh
    IEEE/CAA Journal of Automatica Sinica, 2019, 6 (03) : 760 - 765
  • [10] Inverse source problem for a distributed-order time fractional diffusion equation
    Cheng, Xiaoliang
    Yuan, Lele
    Liang, Kewei
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (01): : 17 - 32