Symplectic graphs over finite local rings

被引:9
|
作者
Meemark, Yotsanan [1 ]
Puirod, Thammanoon [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
关键词
D O I
10.1016/j.ejc.2013.03.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is based on ideas of Meemark and Prinyasart (2011) [8] who introduced the symplectic graph g(SPR(V)), where V is a symplectic space over a finite commutative ring R. When R = Z(pn) and V = R-2v, they proved that g(SPR(V)) is an strongly regular graph when v = 1 and Li, Wang and Guo (2012) [6] showed that it is a strictly Deza graph when v >= 2. In this paper, we study symplectic graphs over finite local rings. We can classify if our graph is a strongly regular graph or a strictly Deza graph. We also show that it is arc transitive. Moreover, we apply the combinatorial technique presented in Meemark and Prinyasart (2011)[8] to prove similar results on subconstituents of symplectic graphs. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1114 / 1124
页数:11
相关论文
共 50 条
  • [1] Symplectic graphs over finite commutative rings
    Meemark, Yotsanan
    Puirod, Thammanoon
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 41 : 298 - 307
  • [2] Nonisotropic symplectic graphs over finite commutative rings
    Sriwongsa, Songpon
    Sirisuk, Siripong
    AIMS MATHEMATICS, 2022, 7 (01): : 821 - 839
  • [3] Generalized symplectic graphs and generalized orthogonal graphs over finite commutative rings
    Sirisuk, Siripong
    Meemark, Yotsanan
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12): : 2427 - 2450
  • [4] Algebraic Cayley graphs over finite local rings
    Rasri, Arnisa
    Meemark, Yotsanan
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 48 : 227 - 240
  • [5] SYMPLECTIC GROUPS OVER LOCAL RINGS
    KLINGENBERG, W
    AMERICAN JOURNAL OF MATHEMATICS, 1963, 85 (02) : 232 - &
  • [6] Finite Euclidean graphs over rings
    Medrano, A
    Myers, P
    Stark, HM
    Terras, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) : 701 - 710
  • [7] Groups generated by symplectic transvections over local rings
    Ishibashi, H
    JOURNAL OF ALGEBRA, 1999, 218 (01) : 26 - 80
  • [8] SPECTRA OF HEISENBERG GRAPHS OVER FINITE RINGS
    DeDeo, M.
    Martinez, M.
    Medrano, A.
    Minei, M.
    Stark, H.
    Terras, A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 213 - 222
  • [9] NUMBER OF CLIQUES OF PALEY-TYPE GRAPHS OVER FINITE COMMUTATIVE LOCAL RINGS
    Gallo, Andrea L.
    Videla, Denis E.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [10] SUBNORMAL STRUCTURE OF SYMPLECTIC GROUPS OVER LOCAL-RINGS
    TAZHETDINOV, S
    MATHEMATICAL NOTES, 1985, 37 (1-2) : 164 - 169