Stripe Parameterization of Tubular Surfaces

被引:0
|
作者
Kaelberer, Felix [1 ]
Nieser, Matthias [1 ]
Polthier, Konrad [1 ]
机构
[1] Free Univ Berlin, Berlin, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel algorithm for automatic parameterization of tubelike surfaces of arbitrary genus, such as the surfaces of knots, trees, blood vessels, neurons, or any tubular graph with a globally consistent stripe texture. Mathematically, these surfaces can be described as thickened graphs, and the calculated parameterization stripe will follow either around the tube, along the underlying graph, a spiraling combination of both, or obey an arbitrary texture map whose charts have a 180 degree symmetry. We use the principal curvature frame field of the underlying tube-like surface to guide the creation of a global, topologically consistent stripe parameterization of the surface. Our algorithm extends the QuadCover algorithm and is based, first, on the use of so-called projective vector fields instead of frame fields, and second, on different types of branch points. That does not only simplify the mathematical theory, but also reduces computation time by the decomposition of the underlying stiffness matrices.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条
  • [1] Stripe Patterns on Surfaces
    Knoeppel, Felix
    Crane, Keenan
    Pinkall, Ulrich
    Schroeder, Peter
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):
  • [2] Tubular triangular mesh parameterization and applications
    Wang, Yimin
    Zheng, Jianmin
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2010, 21 (02) : 91 - 102
  • [3] ON THE NORMAL PARAMETERIZATION OF CURVES AND SURFACES
    Gao, Xiao-Shan
    Chou, Shang-Ching
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1991, 1 (02) : 125 - 136
  • [4] Parameterization of rational translational surfaces
    Perez-Diaz, Sonia
    Shen, Li-Yong
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 156 - 167
  • [5] Numerical parameterization of curves and surfaces
    Hartmann, E
    COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (03) : 251 - 266
  • [6] On the Parameterization of Rational Ringed Surfaces and Rational Canal Surfaces
    Bastl B.
    Jüttler B.
    Lávička M.
    Schulz T.
    Šír Z.
    Mathematics in Computer Science, 2014, 8 (2) : 299 - 319
  • [7] Improving the Parameterization of Approximate Subdivision Surfaces
    He, Lei
    Loop, Charles
    Schaefer, Scott
    COMPUTER GRAPHICS FORUM, 2012, 31 (07) : 2127 - 2134
  • [8] Hexagonal Global Parameterization of Arbitrary Surfaces
    Nieser, Matthias
    Palacios, Jonathan
    Polthier, Konrad
    Zhang, Eugene
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (06) : 865 - 878
  • [9] Triangular mesh parameterization with trimmed surfaces
    Ruiz, Oscar E.
    Mejia, Daniel
    Cadavid, Carlos A.
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2015, 9 (04): : 303 - 316
  • [10] Bi-Lipschitz parameterization of surfaces
    Mario Bonk
    Urs Lang
    Mathematische Annalen, 2003, 327 : 135 - 169