The split common null point problem and the shrinking projection method in Banach spaces

被引:98
|
作者
Takahashi, Satoru [1 ]
Takahashi, Wataru [2 ,3 ,4 ]
机构
[1] Yokohama Publishers, Yokohama, Kanagawa, Japan
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Tokyo 108, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo, Japan
基金
日本学术振兴会;
关键词
split common null point problem; maximal monotone operator; fixed point; metric resolvent; shrinking projection method; duality mapping; 47H05; 47H09; HILBERT-SPACES; CONVERGENCE; OPERATORS; MAPPINGS;
D O I
10.1080/02331934.2015.1020943
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the split common null point problem with resolvents of maximal monotone operators in Banach spaces. Then, using the shrinking projection method, we prove a strong convergence theorem for finding a solution of the split common null point problem in Banach spaces.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 50 条