NEW EXISTENCE AND UNIQUENESS RESULT FOR FRACTIONAL BAGLEY-TORVIK DIFFERENTIAL EQUATION

被引:6
|
作者
Baghani, Hamid [1 ]
Feckan, Michal [2 ,3 ]
Farokhi-Ostad, Javad [4 ]
Alzabut, Jehad [5 ,6 ]
机构
[1] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran
[2] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[4] Birjand Univ Technol, Dept Basic Sci, Birjand, Iran
[5] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[6] OSTIM Tech Univ, Dept Ind Engn, TR-06374 Ankara, Turkey
关键词
Fractional Bagley-Torvik equation; Coupled fractional equations; Banach fixed point theorem; CALCULUS;
D O I
10.18514/MMN.2022.3702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by the paper of Fazli and Nieto in [Open Math. 17 (2019) 499-512], we establish new existence and uniqueness result for a type of fractional Bagley-Torvik differential equation. Reported result not only generalizes previous results but also adopts different technique. We finish this study by concluding remarks which discuss the preference of our theorem compared to previous results. An example is constructed with specific parameters that requires weaker conditions for the existence of a unique solution. Meanwhile, we construct an iterative sequence that converges to the unique solution and can not be commented via the results of Fazli and Nieto.
引用
收藏
页码:537 / 549
页数:13
相关论文
共 50 条
  • [1] An investigation of fractional Bagley-Torvik equation
    Fazli, Hossein
    Nieto, Juan J.
    OPEN MATHEMATICS, 2019, 17 : 499 - 512
  • [2] An Investigation of Fractional Bagley-Torvik Equation
    Zafar, Azhar Ali
    Kudra, Grzegorz
    Awrejcewicz, Jan
    ENTROPY, 2020, 22 (01) : 28
  • [3] THE NEUMANN PROBLEM FOR THE GENERALIZED BAGLEY-TORVIK FRACTIONAL DIFFERENTIAL EQUATION
    Stanek, Svatoslav
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (04) : 907 - 920
  • [4] Numerical Method For Fractional Bagley-Torvik Equation
    Ding, Qinxu
    Wong, Patricia J. Y.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [5] The Neumann problem for the generalized Bagley-Torvik fractional differential equation
    Svatoslav Staněk
    Fractional Calculus and Applied Analysis, 2016, 19 : 907 - 920
  • [6] On the Bagley-Torvik Equation
    Atanackovic, T. M.
    Zorica, D.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2013, 80 (04):
  • [7] Generalized Bagley-Torvik Equation and Fractional Oscillators
    Naber, Mark
    Lymburner, Lucas
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (01): : 164 - 187
  • [8] A Novel Technique for Fractional Bagley-Torvik Equation
    Sakar, Mehmet Giyas
    Saldir, Onur
    Akgul, Ali
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2019, 89 (03) : 539 - 545
  • [9] Fractional differential equations of Bagley-Torvik and Langevin type
    Webb, J. R. L.
    Lan, Kunquan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1639 - 1669
  • [10] An exponential spline approximation for fractional Bagley-Torvik equation
    Emadifar, Homan
    Jalilian, Reza
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)