Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events

被引:11
|
作者
Shinyie, Wendy Ling [1 ]
Ismail, Noriszura [1 ]
Jemain, Abdul Aziz [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Fac Sci & Technol, Bangi 43600, Selangor, Malaysia
关键词
Semi-parametric estimators; Threshold selection; Extreme rainfall events; Semi-parametric bootstrap; VALUE INDEX; STATISTICAL-INFERENCE; TAIL INDEX; SERIES; PARAMETER; MOMENTS; HEAVY; TIME;
D O I
10.1007/s11269-013-0290-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The two primary approaches of extreme events analysis are annual maximum series (AMS), which fits Generalized Extreme Value (GEV) distribution to the yearly peaks of events in the observation period, and partial duration series (PDS), which fits Generalized Pareto (GP) distribution to the peaks of events that exceed a given threshold. The PDS is able to reduce sampling uncertainty and is more useful in dealing with extreme values and asymmetries in the tails, but the optimal threshold is required. The objective of this study is to compare and determine the best method for selecting the optimal threshold of PDS using the hourly, 12-h and 24-h aggregated data of rainfall time series in Peninsular Malaysia. The choice of the threshold, or the number of largest order statistics, can be estimated by the parameters of extreme events. In this study, thirteen semi-parametric estimators are considered and applied to estimate the shape parameter or extreme value index (EVI). A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. Based on the smallest MSE, the majority of stations and data durations favor the Adapted Hill estimator, followed by the QQ, Hill and Moment Ratio 1 estimators. Therefore, this study proves that the application of different estimators on real data may result in different optimal values of threshold and the choice of the best method is very much data-dependent.
引用
收藏
页码:2325 / 2352
页数:28
相关论文
共 50 条
  • [1] Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events
    Wendy Ling Shinyie
    Noriszura Ismail
    Abdul Aziz Jemain
    Water Resources Management, 2013, 27 : 2325 - 2352
  • [2] Semi-parametric Estimation Based on Second Order Parameter for Selecting Optimal Threshold of Extreme Rainfall Events
    Shinyie, Wendy Ling
    Ismail, Noriszura
    Jemain, Abdul Aziz
    WATER RESOURCES MANAGEMENT, 2014, 28 (11) : 3489 - 3514
  • [3] Semi-parametric estimation of multivariate extreme expectiles
    Beck, Nicholas
    Di Bernardino, Elena
    Mailhot, Melina
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 184
  • [4] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    AghaKouchak, Amir
    Nasrollahi, Nasrin
    WATER RESOURCES MANAGEMENT, 2010, 24 (06) : 1229 - 1249
  • [5] Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data
    Amir AghaKouchak
    Nasrin Nasrollahi
    Water Resources Management, 2010, 24 : 1229 - 1249
  • [6] A semi-parametric stochastic generator for bivariate extreme events
    Marcon, Giulia
    Naveau, Philippe
    Padoan, Simone
    STAT, 2017, 6 (01): : 184 - 201
  • [7] Optimal estimating function for estimation and prediction in semi-parametric models
    Durairajan, T. M.
    William, Martin L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) : 3283 - 3292
  • [8] Semi-parametric estimation of shifts
    Gamboa, Fabrice
    Loubes, Jean-Michel
    Maza, Elie
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 616 - 640
  • [9] Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity
    Cathy W. S. Chen
    Richard Gerlach
    Computational Statistics, 2013, 28 : 1103 - 1131
  • [10] Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity
    Chen, Cathy W. S.
    Gerlach, Richard
    COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1103 - 1131