Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure

被引:135
|
作者
He, Chang [1 ]
Wang, Xianyu [1 ]
Phong Thai [2 ]
Baduel, Christine [1 ,3 ]
Gallen, Christie [1 ]
Banks, Andrew [1 ]
Bainton, Paul [4 ]
English, Karin [5 ,6 ]
Mueller, Jochen F. [1 ]
机构
[1] Univ Queensland, QAEHS, Brisbane, Qld, Australia
[2] Queensland Univ Technol, Int Lab Air Qual & Hlth, Brisbane, Qld, Australia
[3] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Sci Analyt, CNRS,ENS Lyon,UMR 5280, 5 Rue Doua, F-69100 Villeurbanne, France
[4] Dept Environm & Energy, GPO Box 787, Canberra, ACT 2601, Australia
[5] Univ Queensland, Sch Med, Brisbane, Qld, Australia
[6] Univ Queensland, Child Hlth Res Ctr, Childrens Hlth & Environm Program, Brisbane, Qld, Australia
基金
澳大利亚研究理事会;
关键词
OPFRs; PBDEs; Alternative flame retardants; Indoor dust and air; Plasticizer; POLYBROMINATED DIPHENYL ETHERS; IN-HOUSE DUST; PASSIVE AIR; ORGANIC CONTAMINANTS; GAS-CHROMATOGRAPHY; CONSUMER PRODUCTS; OUTDOOR AIR; PHASE-OUT; PBDES; PLASTICIZERS;
D O I
10.1016/j.envpol.2017.12.017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Concentrations of nine organophosphate flame retardants (OPFRs) and eight polybrominated diphenyl ethers (PBDEs) were measured in samples of indoor dust (n = 85) and air (n = 45) from Australian houses, offices, hotels, and transportation (buses, trains, and aircraft). All target compounds were detected in indoor dust and air samples. Median Sigma(9)OPFRs concentrations were 40 gig in dust and 44 ng/m(3) in indoor air, while median Sigma 8PBDEs concentrations were 2.1 mu g/g and 0.049 ng/m(3). Concentrations of FRs were higher in rooms that contained carpet, air conditioners, and various electronic items. Estimated daily intakes in adults are 14000 pg/kg body weight/day and 330 pg/kg body weight/day for Sigma(9)OPFRs and Sigma 8PBDEs, respectively. Our results suggest that for the volatile FRs such as tris(2-chloroethyl) phosphate (TCEP) and TCIPP, inhalation is expected to be the more important intake pathway compared to dust ingestion and dermal contact. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:670 / 679
页数:10
相关论文
共 50 条
  • [1] Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust
    van den Eede, Nele
    Dirtu, Alin C.
    Neels, Hugo
    Covaci, Adrian
    ENVIRONMENT INTERNATIONAL, 2011, 37 (02) : 454 - 461
  • [2] Exposure to brominated and organophosphate ester flame retardants in US childcare environments: Effect of removal of flame-retarded nap mats on indoor levels
    Stubbings, W. A.
    Schreder, E. D.
    Thomas, M. B.
    Romanak, K.
    Venier, M.
    Salamova, A.
    ENVIRONMENTAL POLLUTION, 2018, 238 : 1056 - 1068
  • [3] Children's exposure to brominated flame retardants in indoor environments - A review
    Malliari, Eleftheria
    Kalantzi, Olga-Ioanna
    ENVIRONMENT INTERNATIONAL, 2017, 108 : 146 - 169
  • [4] Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure
    Ali, Nadeem
    Eqani, Syed Ali Musstjab Akber Shah
    Ismail, Iqbal Mohammad Ibrahim
    Malarvannan, Govindan
    Kadi, Mohammad W.
    Albar, Hussain Mohammed Salem
    Rehan, Mohammad
    Covaci, Adrian
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 569 : 269 - 277
  • [5] Selected organohalogenated flame retardants in Egyptian indoor and outdoor environments: Levels, sources and implications for human exposure
    Khairy, Mohammed A.
    Lohmann, Rainer
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 633 : 1536 - 1548
  • [6] Hair and Nails as Noninvasive Biomarkers of Human Exposure to Brominated and Organophosphate Flame Retardants
    Liu, Liang-Ying
    He, Ka
    Hites, Ronald A.
    Salamova, Amina
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (06) : 3065 - 3073
  • [7] Organophosphate esters (OPEs) and novel brominated flame retardants (NBFRs) in indoor dust: A systematic review on concentration, spatial distribution, sources, and human exposure
    Liu B.
    Ding L.
    Lv L.
    Yu Y.
    Dong W.
    Chemosphere, 2023, 345
  • [8] Human Exposure to Brominated Flame Retardants
    Johnson-Restrepo, Boris
    Villa, Aida L.
    PERSISTENT ORGANIC CHEMICALS IN THE ENVIRONMENT: STATUS AND TRENDS IN THE PACIFIC BASIN COUNTRIES I: CONTAMINATION STATUS, 2016, 1243 : 17 - 53
  • [9] Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure
    McGrath, Thomas J.
    Morrison, Paul D.
    Ball, Andrew S.
    Clarke, Bradley O.
    ENVIRONMENT INTERNATIONAL, 2018, 113 : 191 - 201
  • [10] Organophosphate Flame Retardants in Indoor Dust from Egypt: Implications for Human Exposure
    Abdallah, Mohamed Abou-Elwafa
    Covaci, Adrian
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (09) : 4782 - 4789