A Modular Approach for Efficient Simple Question Answering Over Knowledge Base

被引:2
|
作者
Buzaaba, Happy [1 ]
Amagasa, Toshiyuki [2 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki, Japan
关键词
Question answering; Knowledge base;
D O I
10.1007/978-3-030-27618-8_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose an approach for efficient question answering (QA) of simple queries over a knowledge base (KB), whereby a single triple consisting of (subject, predicate, object) is retrieved from a KB for a given natural language query. In fact, most recent state-of-the-art methods exploit complex end-to-end neural network approaches to achieve higher precision while making it difficult to perform detailed analysis of the performance and suffering from long execution time when training the networks. To this problem, we decompose the simple QA task in a three step-pipeline: entity detection, entity linking and relation prediction. More precisely, our proposed approach is quite simple but performs reasonably well compared to previous complex approaches. We introduce a novel index that relies on the relation type to filter out subject entities from the candidate list so that the object entity with the highest score becomes the answer to the question. Furthermore, due to its simplicity, our approach can significantly reduce the training time compared to other comparative approaches. The experiment on the SimpleQuestions data set finds that basic LSTMs, GRUs, and non-neural network techniques achieve reasonable performance while providing an opportunity to understand the problem structure.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 50 条
  • [1] A Deep Learning Approach for Question Answering Over Knowledge Base
    Wang, Linjie
    Zhang, Yu
    Liu, Ting
    NATURAL LANGUAGE UNDERSTANDING AND INTELLIGENT APPLICATIONS (NLPCC 2016), 2016, 10102 : 885 - 892
  • [2] A Survey of Question Answering over Knowledge Base
    Wu, Peiyun
    Zhang, Xiaowang
    Feng, Zhiyong
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING, 2019, 1134 : 86 - 97
  • [3] Question Answering Over Knowledge Base: An Overview
    Cao S.-L.
    Shi J.-X.
    Hou L.
    Li J.-Z.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (03): : 512 - 539
  • [4] BT-CKBQA: An efficient approach for Chinese knowledge base question answering
    Yang, Erhe
    Hao, Fei
    Shang, Jiaxing
    Chen, Xiaoliang
    Park, Doo-Soon
    DATA & KNOWLEDGE ENGINEERING, 2023, 147
  • [5] Geographic Knowledge Base Question Answering over OpenStreetMap
    Yang, Jonghyeon
    Jang, Hanme
    Yu, Kiyun
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2024, 13 (01)
  • [6] Unanswerable Question Correction in Question Answering over Personal Knowledge Base
    Yen, An-Zi
    Huang, Hen-Hsen
    Chen, Hsin-Hsi
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14266 - 14275
  • [7] ReTraCk: A Flexible and Efficient Framework for Knowledge Base Question Answering
    Chen, Shuang
    Liu, Qian
    Yu, Zhiwei
    Li, Chin-Yew
    Lou, Jian-Guang
    Jiang, Feng
    ACL-IJCNLP 2021: THE JOINT CONFERENCE OF THE 59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING: PROCEEDINGS OF THE SYSTEM DEMONSTRATIONS, 2021, : 325 - 336
  • [8] Question Answering over Knowledge Base with Symmetric Complementary Attention
    Wu, Yingjiao
    He, Xiaofeng
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2020, 2020, 12115 : 17 - 31
  • [9] Memory Efficient Knowledge Base Question Answering with Chatbot Framework
    Sharath, Sai Japa
    Banafsheh, Rekabdar
    2021 IEEE SEVENTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2021), 2021, : 33 - 39
  • [10] A Constraint Based Question Answering over Semantic Knowledge Base
    Vasudevan, Magesh
    Tripathy, B. K.
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM, VOL 2, 2016, 411 : 121 - 131