LogP Prediction for Blocked Tripeptides with Amino Acids Descriptors (HMLP) by Multiple Linear Regression and Support Vector Regression

被引:2
|
作者
Yin, Jiajian [1 ]
机构
[1] Sichuan Agr Univ, Coll Life & Sci, Yaan 625014, Peoples R China
关键词
HMLP parameters; peptides; logP; QSAR; cross validation; support vector regression; UNIONIZABLE SIDE-CHAINS; N-ACETYL-DIPEPTIDE; QUANTITATIVE-ANALYSES; HYDROPHOBICITY; SUBSTITUENT; PEPTIDES;
D O I
10.1016/j.proenv.2011.10.028
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The hydrophilicity/ lipophilicity of peptides are very important for rational design and drug discovery of bioactive peptides. In this study, each amino acid side chain was characterized by using three structure parameters (heuristic molecular lipophilicity potential, HMLP). Based on HMLP descriptors, prediction QSAR models of the logP were constructed for blocked tripeptides by multiple linear regression (MLR) and support vector regression (SVR). All the results showed that the logP relates to the total surface area(S) and hydrophilic indices (H), and the prediction results of SVR are better than that of MLR. The result shows HMLP parameters (S, L, H) could preferably describe the structure features of the peptides responsible for their octanol to water partition behavior. (c) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Asia-Pacific Chemical, Biological & Environmental Engineering Society (APCBEES)
引用
收藏
页码:173 / 178
页数:6
相关论文
共 50 条
  • [1] A Comparative Analysis on Linear Regression and Support Vector Regression
    Kavitha, S.
    Varuna, S.
    Ramya, R.
    PROCEEDINGS OF 2016 ONLINE INTERNATIONAL CONFERENCE ON GREEN ENGINEERING AND TECHNOLOGIES (IC-GET), 2016,
  • [2] Multiple kernel support vector regression for siRNA efficacy prediction
    Qiu, Shibin
    Lane, Terran
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2008, 4983 : 367 - +
  • [3] Linear support vector regression with linear constraints
    Quentin Klopfenstein
    Samuel Vaiter
    Machine Learning, 2021, 110 : 1939 - 1974
  • [4] Linear support vector regression with linear constraints
    Klopfenstein, Quentin
    Vaiter, Samuel
    MACHINE LEARNING, 2021, 110 (07) : 1939 - 1974
  • [5] Clusterwise support vector linear regression
    Joki, Kaisa
    Bagirov, Adil M.
    Karmitsa, Napsu
    Makela, Marko M.
    Taheri, Sona
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (01) : 19 - 35
  • [6] Robust linear and support vector regression
    Mangasarian, OL
    Musicant, DR
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (09) : 950 - 955
  • [7] MODELING AND PREDICTION OF AMINO ACIDS LIPOPHYLICITY USING MULTIPLE LINEAR REGRESSION COUPLED WITH GENETIC ALGORITHM
    Guidea, Alexandrina
    Sarbu, Costel
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2019, 64 (02): : 243 - 254
  • [8] Support Vector Regression for Classifier Prediction
    Loiacono, Daniele
    Marelli, Andrea
    Lanzi, Pier Luca
    GECCO 2007: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2007, : 1806 - 1813
  • [9] Optimal Selection of Support Vector Regression Parameters and Molecular Descriptors for Retention Indices Prediction
    Zhang, Jun
    Wang, Bing
    Zhang, Xiang
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2010, 6216 : 83 - 90
  • [10] Iterated time series prediction with multiple support vector regression models
    Zhang, Li
    Zhou, Wei-Da
    Chang, Pei-Chann
    Yang, Ji-Wen
    Li, Fan-Zhang
    NEUROCOMPUTING, 2013, 99 : 411 - 422