UNIQUE IMPEDAMETRIC CELL DEFORMABILITY ASSAY USING A MULTI-CONSTRICTION MICROFLUIDIC BIOSENSOR

被引:0
|
作者
Ghassemi, Parham [1 ]
Agah, Masoud [1 ]
机构
[1] Virginia Tech, VT MEMS Lab, Blacksburg, VA 24061 USA
来源
2019 20TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS & EUROSENSORS XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) | 2019年
关键词
Impedance spectroscopy; single-cell analysis; microfluidics; cancer; deformability;
D O I
10.1109/transducers.2019.8808384
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A unique microfluidic device consisting of a multi constriction microfluidic channel with embedded microelectrodes analyzes bioelectrical and biomechanical attributes of single cells. The biosensor can differentiate cancer cells and their non-tumorigenic counterparts. This study reports the first analysis of mechanical and electrical properties of the normal prostate cell-line (PWR-1E) and prostate cancer cell-line (LNCaP C4-2B). Also, the system is the first that utilizes sensors for rapid measurements of cell velocities and bioimpedance as they transit through multiple iterative constrictions. Distinguishing these normal and tumorigenic prostate cells using solely biomechanical properties resulted in an identification accuracy of 85% at single cell level. The addition of bioelectrical parameters enhanced the identification power to 92% for both cell types.
引用
收藏
页码:1059 / 1062
页数:4
相关论文
共 50 条
  • [1] AN EMBEDDED SINGLE-CELL IMPEDAMETRIC POSITIONING TRACKER IN MICROFLUIDIC DEFORMABILITY ASSAYS
    Ghassemi, Parham
    Ren, Xiang
    Strobl, Jeannine S.
    Agah, Masoud
    2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2017, : 1592 - 1595
  • [2] Single-cell mechanical characteristics of human breast cell lines analyzed by multi-constriction microfluidic channels
    Ren, Xiang
    Ghassemi, Parham
    Babahosseini, Hesam
    Strobl, Jeannine S.
    Agah, Masoud
    CANCER RESEARCH, 2017, 77
  • [3] Passive circulating cell sorting by deformability using a microfluidic gradual filter
    Preira, P.
    Grandne, V.
    Forel, J. -M.
    Gabriele, S.
    Camara, M.
    Theodoly, O.
    LAB ON A CHIP, 2013, 13 (01) : 161 - 170
  • [4] Cell separation based on size and deformability using microfluidic funnel ratchets
    McFaul, Sarah M.
    Lin, Bill K.
    Ma, Hongshen
    LAB ON A CHIP, 2012, 12 (13) : 2369 - 2376
  • [5] Recent Progress and Challenges on the Microfluidic Assay of Pathogenic Bacteria Using Biosensor Technology
    Bahavarnia, Farnaz
    Hasanzadeh, Mohammad
    Sadighbayan, Deniz
    Seidi, Farzad
    BIOMIMETICS, 2022, 7 (04)
  • [6] Measurement of Single-Cell Deformability Using Impedance Analysis on Microfluidic Chip
    Kim, Dongil
    Choi, Eunpyo
    Choi, Sung Sik
    Lee, Sangho
    Park, Jungyul
    Yun, Kwang-Seok
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (12)
  • [7] Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR-Cas9 System
    Han, Xin
    Liu, Zongbin
    Zhao, Li
    Wang, Feng
    Yu, Yang
    Yang, Jianhua
    Chen, Rui
    Qin, Lidong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (30) : 8561 - 8565
  • [8] Functional metabolomics using a microfluidic chemoreceptor cell assay
    Roelse, Margriet
    Henquet, Maurice
    de Vos, Ric
    Schipper, Bert
    Polder, Gerrit
    de Ruijter, Norbert
    Hall, Robert
    Jongsma, Maarten
    CHEMICAL SENSES, 2017, 42 (02) : E20 - E20
  • [9] Non-Destructive Microfluidic Cell-Based Assay for Determining Cell Deformability as a Function of Epithelial-to-Mesenchymal Transition
    Tavassoli, P.
    Wang, L.
    Park, S.
    Ma, H.
    Black, P.
    MODERN PATHOLOGY, 2013, 26 : 447A - 447A
  • [10] Measuring red blood cell deformability and its heterogeneity using a fast microfluidic device
    Kumari, Savita
    Mehendale, Ninad
    Roy, Tanusri
    Sen, Shamik
    Mitra, Dhrubaditya
    Paul, Debjani
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (08):