Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability

被引:91
|
作者
Yu, Haichao [1 ,2 ]
Ren, Kuankuan [3 ]
Wu, Qiang [4 ]
Wang, Jian [1 ]
Lin, Jie [1 ]
Wang, Zhijie [3 ]
Xu, Jingjun [4 ]
Oulton, Rupert F. [2 ]
Qu, Shengchun [3 ]
Jin, Peng [1 ]
机构
[1] Harbin Inst Technol, Res Ctr Ultra Precis Optoelect Instrument, Harbin 150080, Peoples R China
[2] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[3] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
[4] Nankai Univ, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300457, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金; 北京市自然科学基金;
关键词
SOLAR-CELLS; HALIDE PEROVSKITES; WAVE-GUIDE; NANOLASER; LENGTHS;
D O I
10.1039/c6nr06891j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic nanolasers have ushered in a paradigm of deep sub-wavelength coherent optical sources with ultrafast dynamics that exploit the strong confinement capabilities of metals. Although these devices are usually associated with higher thresholds due to absorption in metals, the high gain inorganic II-VI and III-V semiconductor materials have allowed the realization of plasmonic nanolasers operating under ambient conditions. In this work, we introduce single-crystalline lead halide perovskite (CH3NH3PbI3) nanowires as an organic-inorganic semiconducting gain material to the plasmonic laser community. We demonstrate plasmonic laser action using a hybrid geometry whereby the perovskite nanowires are placed on a silver substrate with an insulating spacer layer. We report relatively low threshold operation under ambient conditions (13.5 mu J cm(-2)), and the devices work well even at temperatures up to 43.6 degrees C. The demonstration highlights the high optical gain achievable in perovskite materials and thus provides a solution to high gain materials for plasmonic devices.
引用
收藏
页码:19536 / 19540
页数:5
相关论文
共 50 条
  • [1] Organic-Inorganic Hybrid Perovskite Nanowire Laser Arrays
    Liu, Peng
    He, Xianxiong
    Ren, Jiahuan
    Liao, Qing
    Yao, Jiannian
    Fu, Hongbing
    ACS NANO, 2017, 11 (06) : 5766 - 5773
  • [2] Toward Hybrid Organic-Inorganic Perovskite Diode Lasers
    Giebink, Noel
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [3] Organic-Inorganic Composite Nanocoatings with Superhydrophobicity, Good Transparency, and Thermal Stability
    Xu, Qian Feng
    Wang, Jian Nong
    Sanderson, Kevin D.
    ACS NANO, 2010, 4 (04) : 2201 - 2209
  • [4] Intrinsic stability of organic-inorganic hybrid perovskite
    Zhang Yu
    Zhou Huan-Ping
    ACTA PHYSICA SINICA, 2019, 68 (15)
  • [5] Stability of self-assembled organic-inorganic layered perovskite
    Kitazawa, N
    Yamamoto, T
    Watanabe, Y
    Nakamura, Y
    ORGANIC/INORGANIC HYBRID MATERIALS II, 1999, 576 : 165 - 170
  • [6] Thermal Transport in Engineered Hybrid Organic-Inorganic Perovskite Metasurfaces
    Halder, Saswata
    Kessel, Amit
    Mazurski, Noa
    Levy, Uriel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (28): : 15134 - 15144
  • [7] Organic-inorganic composite nanocoatings with superhydrophobicity and thermal stability
    Syafiq, A.
    Pandey, A. K.
    Balakrishnan, Vengadaesvaran
    Shahabuddin, Syed
    Abd Rahim, Nasrudin
    PIGMENT & RESIN TECHNOLOGY, 2024, 53 (01) : 10 - 16
  • [8] Photophysical Properties and Improved Stability of Organic-Inorganic Perovskite by Surface Passivation
    Naghadeh, Sara Bonabi
    Luo, Binbin
    Abdelmageed, Ghada
    Pu, Ying-Chih
    Zhang, Cheng
    Zhang, Jin Z.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (28): : 15799 - 15818
  • [9] Research progress in the stability of organic-inorganic hybrid perovskite solar cells
    Duan H.
    Materials Science Forum, 2020, 980 : 97 - 106
  • [10] Hybrid Organic-Inorganic Perovskite Photodetectors
    Tian, Wei
    Zhou, Huanping
    Li, Liang
    SMALL, 2017, 13 (41)