Scaling limits of k-ary growing trees

被引:10
|
作者
Haas, Benedicte [1 ,2 ]
Stephenson, Robin [3 ]
机构
[1] Univ Paris 09, F-75005 Paris, France
[2] Ecole Normale Super, F-75005 Paris, France
[3] Univ Paris 09, F-75775 Paris 16, France
关键词
Random growing trees; Scaling limits; Self-similar fragmentation trees; Gromov-Hausdorff-Prokhorov topology; MARKOV BRANCHING TREES; FRAGMENTATIONS;
D O I
10.1214/14-AIHP622
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For each integer k >= 2, we introduce a sequence of k-ary discrete trees constructed recursively by choosing at each step an edge uniformly among the present edges and grafting on "its middle" k - 1 new edges. When k = 2, this corresponds to a well-known algorithm which was first introduced by Remy. Our main result concerns the asymptotic behavior of these trees as the number of steps n of the algorithm becomes large: for all k, the sequence of k-ary trees grows at speed n(1/k) towards a k-ary random real tree that belongs to the family of self-similar fragmentation trees. This convergence is proved with respect to the Gromov-Hausdorff-Prokhorov topology. We also study embeddings of the limiting trees when k varies.
引用
收藏
页码:1314 / 1341
页数:28
相关论文
共 50 条
  • [1] ON FIBONACCI K-ARY TREES
    CHANG, DK
    FIBONACCI QUARTERLY, 1986, 24 (03): : 258 - 262
  • [2] GENERATION AND RANKING OF K-ARY TREES
    ZAKS, S
    INFORMATION PROCESSING LETTERS, 1982, 14 (01) : 44 - 48
  • [3] Protected points in k-ary trees
    Mansour, Toufik
    APPLIED MATHEMATICS LETTERS, 2011, 24 (04) : 478 - 480
  • [4] Antibandwidth of complete k-ary trees
    Calamoneri, Tiziana
    Massini, Annalisa
    Toeroek, L'ubomir
    Vrt'o, Imrich
    DISCRETE MATHEMATICS, 2009, 309 (22) : 6408 - 6414
  • [5] Parallel generation of k-ary trees
    Vajnovszki, V
    Phillips, C
    HIGH PERFORMANCE COMPUTING ON THE INFORMATION SUPERHIGHWAY - HPC ASIA '97, PROCEEDINGS, 1997, : 117 - 121
  • [6] Recursive Generation of k-ary Trees
    Manes, K.
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (07)
  • [7] Systolic generation of k-ary trees
    Lesi, Vincent Vajnovszki
    Parallel Processing Letters, 1999, 9 (01): : 93 - 101
  • [8] On k-ary spanning trees of tournaments
    Lu, XY
    Wang, DW
    Chang, GJ
    Lin, IJ
    Wong, CK
    JOURNAL OF GRAPH THEORY, 1999, 30 (03) : 167 - 176
  • [9] GENERATING K-ARY TREES IN LEXICOGRAPHIC ORDER
    ZHU, Y
    WANG, J
    SCIENTIA SINICA, 1980, 23 (10): : 1219 - 1225
  • [10] GENERATING k-ARY TREES IN LEXICOGRAPHIC ORDER
    朱永津
    王建方
    Science China Mathematics, 1980, (10) : 1219 - 1225