Blow-up and global existence for nonlinear reaction-diffusion equations under Neumann boundary conditions

被引:1
|
作者
Ding, Juntang [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
blow-up; global existence; reaction-diffusion equation; SEMILINEAR HEAT-EQUATION;
D O I
10.1186/s13660-016-1029-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the blow-up and global solutions of the following nonlinear reaction-diffusion equations under Neumann boundary conditions: {q(u)), - del . (a(u)b(x)del u) + f(x, u) in D x (0, T), partial derivative u/partial derivative n = 0 on partial derivative D x (0, T), u(x, 0) = u(0)(x) > 0 in (D) over bar, where D. R-N (N = 2) is a bounded domain with smooth boundary. D. By constructing auxiliary functions and using maximum principles and a first-order differential inequality technique, sufficient conditions for the existence of the blow-up solution, an upper bound for the ` blow-up time', an upper estimate of the ;blow-up rate', sufficient conditions for the existence of global solution, and an upper estimate of the global solution are specified under some appropriate assumptions on the functions a, b, f, g, and initial value u0.
引用
收藏
页数:11
相关论文
共 50 条