Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria

被引:85
|
作者
Cong, Hong [2 ]
Niedzwiedzki, Dariusz M. [1 ]
Gibson, George N. [2 ]
LaFountain, Amy M. [1 ]
Kelsh, Rhiannon M. [1 ]
Gardiner, Alastair T. [3 ]
Cogdell, Richard J. [3 ]
Frank, Harry A. [1 ]
机构
[1] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[3] Univ Glasgow, Div Biochem & Mol Biol, Inst Biomed & Life Sci, Glasgow G12 8QQ, Lanark, Scotland
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2008年 / 112卷 / 34期
基金
美国国家科学基金会; 美国国家卫生研究院; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1021/jp711946w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried Out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at similar to 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to similar to 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S-1 (2(1)A(g)(-)) -> S-2 (1(1)B(u)(+)) excited-state transitions which, when subtracted from the energies of the S-0 (1(1)A(g)(-)) -> S-2 (1(1)B(u)(+)) transitions determined by steady-state absorption measurements, give precise values for the positions of the S-1 (2(1)A(g)(-)) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car(center dot+)). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S-1 (1(1)A(g)(-)), S-2 (1(1)B(u)(+)), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S-1 (2(1)A(g)(-)) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.
引用
收藏
页码:10689 / 10703
页数:15
相关论文
共 50 条
  • [1] Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution
    Polli, D
    Cerullo, G
    Lanzani, G
    De Silvestri, S
    Hashimoto, H
    Cogdell, RJ
    BIOPHYSICAL JOURNAL, 2006, 90 (07) : 2486 - 2497
  • [2] Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S1 state in the LH2 complexes from purple bacteria
    Zhang, JP
    Fujii, R
    Qian, P
    Inaba, T
    Mizoguchi, T
    Koyama, Y
    Onaka, K
    Watanabe, Y
    Nagae, H
    JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (15): : 3683 - 3691
  • [3] Triplet-energy transfer from bacteriochlorophyll to carotenoid in the LH1 and LH2 antenna complexes and mixture in the solution
    Akahane, J
    Kakitani, Y
    Koyama, Y
    PLANT AND CELL PHYSIOLOGY, 2005, 46 : S39 - S39
  • [4] Ultrafast formation of a carotenoid radical in LH2 antenna complexes of purple bacteria
    Polívka, T
    Pullerits, T
    Frank, HA
    Cogdell, RJ
    Sundström, V
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (39): : 15398 - 15407
  • [5] Bacteriochlorophyll and carotenoid excitonic couplings in the LH2 system of purple bacteria
    Tretiak, S
    Middleton, C
    Chernyak, V
    Mukamel, S
    JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (40): : 9540 - 9553
  • [6] Bridging Carotenoid-to-Bacteriochlorophyll Energy Transfer of Purple Bacteria LH2 With Temperature Variations: Insights From Conformational Changes
    Mao, Ruichao
    Wang, Xiaocong
    Gao, Jun
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [7] Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum
    Magdaong, Nikki M.
    LaFountain, Amy M.
    Hacking, Kirsty
    Niedzwiedzki, Dariusz M.
    Gibson, George N.
    Cogdell, Richard J.
    Frank, Harry A.
    PHOTOSYNTHESIS RESEARCH, 2016, 127 (02) : 171 - 187
  • [8] Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum
    Niedzwiedzki, Dariusz M.
    Fuciman, Marcel
    Kobayashi, Masayuki
    Frank, Harry A.
    Blankenship, Robert E.
    PHOTOSYNTHESIS RESEARCH, 2011, 110 (01) : 49 - 60
  • [9] Carotenoid-to-bacteriochlorophyll energy transfer through vibronic coupling in LH2 from Phaeosprillum molischianum
    Thyrhaug, Erling
    Lincoln, Craig N.
    Branchi, Federico
    Cerullo, Giulio
    Perlik, Vaclav
    Sanda, Frantisek
    Lokstein, Heiko
    Hauer, Juergen
    PHOTOSYNTHESIS RESEARCH, 2018, 135 (1-3) : 45 - 54
  • [10] Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum
    Nikki M. Magdaong
    Amy M. LaFountain
    Kirsty Hacking
    Dariusz M. Niedzwiedzki
    George N. Gibson
    Richard J. Cogdell
    Harry A. Frank
    Photosynthesis Research, 2016, 127 : 171 - 187