On the existence of almost automorphic solutions of Volterra difference equations

被引:15
|
作者
Cuevas, Claudio [2 ]
Henriquez, Hernan R. [1 ]
Lizama, Carlos [1 ]
机构
[1] Univ Santiago, Fac Ciencia, Dept Matemat, USACH, Santiago, Chile
[2] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
关键词
discrete almost automorphic functions; Volterra difference equations; Volterra functional difference equations; ALMOST-PERIODIC SOLUTIONS;
D O I
10.1080/10236198.2011.603311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complex summable sequence a(n) and a discrete almost automorphic function f (n) with values in a complex Banach space X, we give criteria for the existence of discrete almost automorphic solutions of the linear Volterra difference equation u(n + 1) = lambda Sigma(n)(j=-infinity) a(n - j)u(j) + f(n), n is an element of Z, for lambda in a distinguished subset of the complex plane, determined by a(n). We also prove the existence of a discrete almost automorphic solution of the nonlinear Volterra difference equation u(n + 1) = lambda Sigma(n)(j=infinity) a(n - j)u(j) + f (n, u(n), n is an element of Z, where f (n, x) is a discrete almost automorphic function in n for each x [ X that satisfies a global Lipschitz condition and takes values in X. Finally, we treat the same type of problemfor Volterra functional difference equations.
引用
收藏
页码:1931 / 1946
页数:16
相关论文
共 50 条