Codimension-2 Border Collision Bifurcations in One-Dimensional Discontinuous Piecewise Smooth Maps

被引:25
|
作者
Gardini, Laura [1 ]
Avrutin, Viktor [2 ]
Sushko, Irina [3 ]
机构
[1] Univ Urbino, DESP, I-61029 Urbino, Italy
[2] Univ Stuttgart, IST, Stuttgart, Germany
[3] Natl Acad Sci Ukraine, Inst Math, Kiev, Ukraine
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2014年 / 24卷 / 02期
关键词
Border collision bifurcations; codimension-2; bifurcations; one-dimensional maps; piecewise smooth maps; discontinuous maps; MULTI-PARAMETRIC BIFURCATIONS; LORENZ MAPS; DYNAMICS;
D O I
10.1142/S0218127414500242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a two-parametric family of one-dimensional piecewise smooth maps with one discontinuity point. The bifurcation structures in a parameter plane of the map are investigated, related to codimension-2 bifurcation points defined by the intersections of two border collision bifurcation curves. We describe the case of the collision of two stable cycles of any period and any symbolic sequences. For this case, we prove that the local monotonicity of the functions constituting the first return map defined in a neighborhood of the border point at the parameter values related to the codimension-2 bifurcation point determines, under suitable conditions, the kind of bifurcation structure originating from this point; this can be either a period adding structure, or a period incrementing structure, or simply associated with the coupling of colliding cycles.
引用
收藏
页数:30
相关论文
共 50 条