Double Wedgie: Efficient Filtering Algorithm for Streaming Time Series

被引:0
|
作者
Liu, Junling [1 ]
Liu, Jiangxiu [2 ]
Sun, Huanliang [2 ]
机构
[1] Shenyang Jianzhu Univ, Ctr Comp, Shenyang 110168, Peoples R China
[2] Shenyang Jianzhu Univ, Sch Informat & Control Engn, Shenyang 110168, Peoples R China
来源
FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 5, PROCEEDINGS | 2008年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/FSKD.2008.247
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Filtering streaming time series can benefit monitoring a streaming time series for predefined patterns. Based on the Atomic Wedgie algorithm, we propose a new concept named Double Wedgie and define a tighter lower bound distance on it. The filtering algorithm based on Double Wedgie is more efficient than Atomic Wedgie. Extensive experiments demonstrate that the new algorithm can achieve tremendous improvements in the streaming time series query filtering with guaranteed no false dismissal. Also, the larger difference between the predefined patterns is, the more efficient the algorithm is.
引用
收藏
页码:335 / +
页数:2
相关论文
共 50 条
  • [1] Atomic wedgie: Efficient query filtering for streaming time series
    Wei, L
    Keogh, E
    Van Herle, H
    Mafra-Neto, A
    FIFTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2005, : 490 - 497
  • [2] Efficient query filtering for streaming time series with applications to semisupervised learning of time series classifiers
    Wei, Li
    Keogh, Eamonn
    Van Herle, Helga
    Mafra-Neto, Agenor
    Abbott, Russell J.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 11 (03) : 313 - 344
  • [3] Efficient query filtering for streaming time series with applications to semisupervised learning of time series classifiers
    Li Wei
    Eamonn Keogh
    Helga Van Herle
    Agenor Mafra-Neto
    Russell J. Abbott
    Knowledge and Information Systems, 2007, 11 : 313 - 344
  • [4] A Continuous Segmentation Algorithm for Streaming Time Series
    Hu, Yupeng
    Ji, Cun
    Jing, Ming
    Ding, Yiming
    Kuai, Shuo
    Li, Xueqing
    COLLABORATE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2016, 2017, 201 : 140 - 151
  • [5] Efficient Similarity Searching Approach for Streaming Time Series
    Zhang, Qi
    Luo, Wei
    Hu, Ziyu
    Zhan, Peng
    Jin, Yan
    Li, Xueqing
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 815 - 818
  • [6] Efficient evaluation of composite correlations for streaming time series
    Wang, M
    Wang, XS
    ADVANCES IN WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2003, 2762 : 369 - 380
  • [7] Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series
    Zhong, Sheng
    Souza, Vinicius M. A.
    Mueen, Abdullah
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2022, 16 (05)
  • [8] An Efficient Method for Discovering Motifs in Streaming Time Series Data
    Cao Duy Truong
    Duong Tuan Anh
    KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2013), VOL 1, 2014, 244 : 225 - 236
  • [9] An efficient algorithm for R-R intervals series filtering
    Logier, R
    De Jonckheere, J
    Dassonneville, A
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 3937 - 3940
  • [10] An Efficient Clustering Algorithm for Multivariate Time Series
    Zhou, Da-Zhuo
    Zhang, Bo
    EBM 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT, VOLS 1-8, 2010, : 5190 - 5193