Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth

被引:5
|
作者
Benchaib, Mehdi [1 ,2 ,3 ]
Labrune, Elsa [1 ,3 ,4 ]
D'Estaing, Sandrine Giscard [1 ,4 ,5 ]
Salle, Bruno [1 ,4 ,5 ]
Lornage, Jacqueline [1 ,4 ,5 ]
机构
[1] Hosp Civil Lyon, Med Reprod & Preservat Fertilite Feminine, HFME, Bron, France
[2] UMR CNRS 5558, LBBE, Villeurbanne, France
[3] Univ Lyon 1, Fac Med Lyon Est, Lyon, France
[4] Inserm U1208, Bron, France
[5] Univ Lyon 1, Fac Med, Lyon Sud, Oullins, France
关键词
artificial intelligence; blastocyst; embryo selection; time lapse; EMBRYO-TRANSFER; IN-VITRO; SELECTION; IVF; INTELLIGENCE; IMPLANTATION; ALGORITHMS; INCUBATION; MORPHOLOGY; ANEUPLOIDY;
D O I
10.1002/rmb2.12486
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Purpose The purpose of this work was to construct shallow neural networks (SNN) using time-lapse technology (TLT) from morphokinetic parameters coupled to assisted reproductive technology (ART) parameters in order to assist the choice of embryo(s) to be transferred with the highest probability of achieving a live birth (LB). Methods A retrospective observational single-center study was performed, 654 cycles were included. Three SNN: multilayers perceptron (MLP), simple recurrent neuronal network (simple RNN) and long short term memory RNN (LSTM-RNN) were trained with K-fold cross-validation to avoid sampling bias. The predictive power of SNNs was measured using performance scores as AUC (area under curve), accuracy, precision, Recall and F1 score. Results In the training data group, MLP and simple RNN provide the best performance scores; however, all AUCs were above 0.8. In the validating data group, all networks were equivalent with no performance scores difference and all AUC values were above 0.8. Conclusion Coupling morphokinetic parameters with ART parameters allows to SNNs to predict the probability of LB, and all SNNs seems to be efficient according to the performance scores. An automatic time recognition system coupled to one of these SNNs could allow a complete automation to choose the blastocyst(s) to be transferred.
引用
收藏
页数:10
相关论文
共 19 条
  • [1] Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth
    Sawada, Yuki
    Sato, Takeshi
    Nagaya, Masashi
    Saito, Chieko
    Yoshihara, Hiroyuki
    Banno, Chihiro
    Matsumoto, Yosuke
    Matsuda, Yukino
    Yoshikai, Kaori
    Sawada, Tomio
    Ukita, Norimichi
    Sugiura-Ogasawara, Mayumi
    REPRODUCTIVE BIOMEDICINE ONLINE, 2021, 43 (05) : 843 - 852
  • [2] Morphokinetic parameters from a time-lapse monitoring system cannot accurately predict the ploidy of embryos
    Jingye Zhang
    Wenrong Tao
    Hui Liu
    Guanling Yu
    Mei Li
    Shuiying Ma
    Keliang Wu
    Journal of Assisted Reproduction and Genetics, 2017, 34 : 1173 - 1178
  • [3] Morphokinetic parameters from a time-lapse monitoring system cannot accurately predict the ploidy of embryos
    Zhang, Jingye
    Tao, Wenrong
    Liu, Hui
    Yu, Guanling
    Li, Mei
    Ma, Shuiying
    Wu, Keliang
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2017, 34 (09) : 1173 - 1178
  • [4] FIRST APPLICATION OF ARTIFICIAL NEURONAL NETWORKS FOR HUMAN LIVE BIRTH PREDICTION ON GERI TIME-LAPSE MONITORING SYSTEM BLASTOCYST IMAGES.
    Alegre, Lucia
    Bori, Lorena
    de los Angeles Valera, Maria
    Gouveia Nogueira, Marcelo Fabio
    Satoshi Ferreira, Andre
    Celso Rocha, Jose
    Meseguer, Marcos
    FERTILITY AND STERILITY, 2020, 114 (03) : E140 - E140
  • [5] Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis
    Csaba, Pribenszky
    Nilselid, Anna-Maria
    Montag, Markus
    REPRODUCTIVE BIOMEDICINE ONLINE, 2017, 35 (05) : 511 - 520
  • [6] External validation of a time-lapse model; a retrospective study comparing embryo evaluation using a morphokinetic model to standard morphology with live birth as endpoint
    Adolfsson, Emma
    Porath, Sandra
    Andershed, Anna Nowosad
    JORNAL BRASILEIRO DE REPRODUCAO ASSISTIDA, 2018, 22 (03): : 205 - 214
  • [7] Time-lapse imaging derived morphokinetic variables reveal association with implantation and live birth following in vitro fertilization: A retrospective study using data from transferred human embryos
    Sayed, Shabana
    Reigstad, Marte Myhre
    Petersen, Bjorn Molt
    Schwennicke, Arne
    Hausken, Jon Wegner
    Storeng, Ritsa
    PLOS ONE, 2020, 15 (11):
  • [8] Time-lapse (TL) morphokinetic parameters do not predict the outcome of fresh In-Vitro Fertilization/Single Embryo Transfer (IVF/SET) cycles
    Christou, G.
    Dimitriadis, I.
    Bourke, L.
    McLellan, S. T.
    Blowmick, P.
    Bormann, C. L.
    Souter, I.
    HUMAN REPRODUCTION, 2017, 32 : 103 - 103
  • [9] Can novel early non-invasive biomarkers of embryo quality be identified with time-lapse imaging to predict live birth?
    Barberet, J.
    Bruno, C.
    Valot, E.
    Antunes-Nunes, C.
    Jonval, L.
    Chammas, J.
    Choux, C.
    Ginod, P.
    Sagot, P.
    Soudry-Faure, A.
    Fauque, P.
    HUMAN REPRODUCTION, 2019, 34 (08) : 1439 - 1449
  • [10] Big data is not always better - prediction of live birth using machine learning on time-lapse videos of human embryos
    Hicks, S.
    Haugen, B.
    Iliceto, M.
    Hammer, H. L.
    Andersen, J. M.
    Witczak, O.
    Riegler, M. A.
    Stensen, M. H.
    HUMAN REPRODUCTION, 2020, 35 : I235 - I235