An asymptotic expansion for energy eigenvalues of anharmonic oscillators

被引:18
|
作者
Gaudreau, Philippe [1 ]
Slevinsky, Richard M. [1 ]
Safouhi, Hassan [1 ]
机构
[1] Univ Alberta, Math Sect, Edmonton, AB T6C 4G9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum anharmonic oscillator; Asymptotic expansion; WKB theory; GROUND-STATE ENERGY; PERTURBATION-THEORY; SCHRODINGER-EQUATION; SUMMATION; SERIES; WKB;
D O I
10.1016/j.aop.2013.07.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present contribution, we derive an asymptotic expansion for the energy eigenvalues of anharmonic oscillators for potentials of the form V(x) = kappa x(2q) + omega x(2), q = 2, 3, . . . as the energy level n approaches infinity. The asymptotic expansion is obtained using the WKB theory and series reversion. Furthermore, we construct an algorithm for computing the coefficients of the asymptotic expansion for quartic anharmonic oscillators, leading to an efficient and accurate computation of the energy values for n >= 6. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 50 条