Theory of thermal expansion in 2D crystals

被引:23
|
作者
Michel, K. H. [1 ]
Costamagna, S. [1 ,2 ]
Peeters, F. M. [1 ]
机构
[1] Univ Antwerp, Dept Phys, BE-2020 Antwerp, Belgium
[2] Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina
来源
关键词
anharmonic effects; graphene; thermal expansion; two-dimensional crystals; GRAPHENE; SCATTERING; GRAPHITE; NEUTRONS;
D O I
10.1002/pssb.201552286
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2433 / 2437
页数:5
相关论文
共 50 条
  • [1] Theory of 2D crystals: graphene and beyond
    Roldan, Rafael
    Chirolli, Luca
    Prada, Elsa
    Angel Silva-Guillen, Jose
    San-Jose, Pablo
    Guinea, Francisco
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (15) : 4387 - 4399
  • [2] Theory of diffraction for 2D photonic crystals with a boundary
    Felbacq, D
    Centeno, E
    OPTICS COMMUNICATIONS, 2001, 199 (1-4) : 39 - 45
  • [3] THEORY OF THERMAL EXPANSION IN MAGNETICALLY ORDERED CRYSTALS
    GUSEINOV, NG
    SEIDOV, YM
    SOVIET PHYSICS SOLID STATE,USSR, 1966, 7 (12): : 2929 - &
  • [4] Giant Thermal Expansion in 2D and 3D Cellular Materials
    Zhu, Hanxing
    Fan, Tongxiang
    Peng, Qing
    Zhang, Di
    ADVANCED MATERIALS, 2018, 30 (18)
  • [5] Elastic theory of 1D-quasiperiodic stacking of 2D crystals
    Peng, YZ
    Fan, TY
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (45) : 9381 - 9387
  • [6] Prediction method of thermal expansion coefficient for 2D composite fabric
    Deng, Zihui
    Yang, Feng
    Zheng, Xitao
    Yan, Chao
    Li, Yujun
    Zhang, Haoyu
    Liu, Xunxin
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [7] The crystal nucleation theory revisited: The case of 2D colloidal crystals
    Gonzalez, A. E.
    Ixtlilco-Cortes, L.
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 279 - 279
  • [8] Thermal emission properties of 2D and 3D silicon photonic crystals
    Gesemann, Benjamin
    Schweizer, Stefan L.
    Wehrspohn, Ralf B.
    2008 5TH IEEE INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS, 2008, : 320 - 322
  • [9] Thermal emission properties of 2D and 3D silicon photonic crystals
    Gesemann, Benjamin
    Schweizer, Stefan L.
    Wehrspohn, Ralf B.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES VIII, 2008, 6989
  • [10] Thermal emission properties of 2D and 3D silicon photonic crystals
    Gesemann, Benjamin
    Schweizer, Stefan L.
    Wehrspohn, Ralf B.
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (02) : 107 - 111