On the vector-valued Littlewood-Paley-Rubio de Francia inequality

被引:5
|
作者
Potapov, Denis [1 ]
Sukochev, Fedor [1 ]
Xu, Quanhua [2 ,3 ]
机构
[1] Univ NSW, Sch Math & Stat, Kensignton, NSW 2052, Australia
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Univ Franche Comte, Math Lab, F-25030 Besancon, France
关键词
Littlewood-Paley-Rubio de Francia inequality; UMD space of type 2; Banach lattices; MULTIPLIER THEOREMS; SPACES;
D O I
10.4171/RMI/693
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper studies Banach spaces satisfying the Littlewood-Paley-Rubio de Francia property LPRp, 2 <= p < infinity. The paper shows that every Banach lattice whose 2-concavification is a UMD Banach lattice has this property. The paper also shows that every space having LPRq also has LPNp with q <= p < infinity.
引用
收藏
页码:839 / 856
页数:18
相关论文
共 50 条