A set of squares without arithmetic progressions

被引:5
|
作者
Gyarmati, Katalin [1 ]
Ruzsa, Imre Z. [2 ]
机构
[1] Eotvos Lorand Univ, Algebra & Number Theory Dept, H-1117 Budapest, Hungary
[2] Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
arithmetic progression;
D O I
10.4064/aa155-1-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [1] SQUARES IN ARITHMETIC PROGRESSIONS
    BOMBIERI, E
    GRANVILLE, A
    PINTZ, J
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) : 369 - 385
  • [2] Simultaneous squares from arithmetic progressions
    Widmer, H
    Franco, Z
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (09): : 867 - 868
  • [3] A note on squares in arithmetic progressions, II
    Bombieri, Enrico
    Zannier, Umberto
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 2002, 13 (02): : 69 - 75
  • [4] Balances in the Set of Arithmetic Progressions
    Chung, Chan-Liang
    Zhong, Chunmei
    Zhou, Kanglun
    AXIOMS, 2021, 10 (04)
  • [5] On a conjecture of Rudin on squares in arithmetic progressions
    Gonzalez-Jimenez, Enrique
    Xarles, Xavier
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 (01): : 58 - 76
  • [6] Arithmetic progressions of squares and multiple Dirichlet series
    Hulse, Thomas A.
    Kuan, Chan Ieong
    Lowry-Duda, David
    Walker, Alexander
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (04)
  • [7] Lattice points on circles, squares in arithmetic progressions and sumsets of squares
    Cilleruelo, Javier
    Granville, Andrew
    ADDITIVE COMBINATORICS, 2007, 43 : 241 - +
  • [8] DISTANCE BETWEEN ARITHMETIC PROGRESSIONS AND PERFECT SQUARES
    Chan, Tsz Ho
    MATHEMATIKA, 2011, 57 (01) : 41 - 49
  • [9] Squares in Arithmetic Progressions and Infinitely Many Primes
    Granville, Andrew
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (10): : 951 - 954
  • [10] AN INFINITE PERMUTATION WITHOUT ARITHMETIC PROGRESSIONS
    SIDORENKO, AF
    DISCRETE MATHEMATICS, 1988, 69 (02) : 211 - 211