Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries

被引:92
|
作者
Zhao, Enyue [1 ]
Liu, Xiangfeng [1 ]
Hu, Zhongbo [1 ]
Sun, Limei [2 ]
Xiao, Xiaoling [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[2] China Inst Atom Energy, Beijing 102413, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium-ion battery; Lithium-rich layered oxide; Cathode; Li2TiO3; Coating; HIGH-CAPACITY; CYCLING PERFORMANCE; ELECTRODE MATERIALS; CO ELECTRODES; OXYGEN LOSS; LIMO2; M; MN; NI; TI; IMPROVEMENT;
D O I
10.1016/j.jpowsour.2015.06.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li2TiO3-coated Li-rich layered Li1.13Ni0.30Mn0.57O2 (0.3Li(2)MnO(3)center dot 0.7LiNi(0.5),Mn0.5O2) compound has been successfully synthesized for the first time through a syn-lithiation strategy. In this approach, Ni0.35Mn0.65C2O4 center dot xH(2)O precursor is first prepared by a co-precipitation method, then it is coated with TiO2 through a reaction between Ni0.35Mn0.65C2O4 center dot xH(2)O and Ti(OC4H9)(4), and finally Ni0.35Mn0.65C2O4 center dot yH(2)O@TiO2 is simultaneously lithiated to form Li2TiO3-coated Li-rich layered oxide. Both the cyclability and high-rate capability of Li-rich layered cathode materials have been greatly improved by Li(2)TiO(3)coating. Meanwhile, the Li2TiO3 coating layer also reduces the polarization of the electrode and retards voltage drop during cycling. The reversible capacity of the 3 mol% Li2TiO3-coated Li-rich layered cathode material at the 100th cycle at a large current density of 100 mA/g is significantly enhanced to 105 mAh/g from 78 mAh/g of the un-coated sample. The enhancements of the electrochemical performance can be largely attributed to the stabilization of the interface between the cathode and electrolyte, the three-dimensional path for Lit-ion and better conductivity after Li2TiO3 coating. It is also disclosed that the amount of Li(2)TiO(3)coating also has a large influence on the electrochemical performances and it is necessary to optimize the specific capacity, cycling stability and rate capability through tuning the content of Li2TiO3 coating. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 149
页数:9
相关论文
共 50 条
  • [1] Self-template synthesis of Li1.13Ni0.30Mn0.57O2 anothorn spheres and nanorods as high-performance cathode materials for lithium-ion batteries
    Jiang, Yan
    Yang, Ze
    Mei, Fei
    Zhou, Yuanming
    Xu, Jinxia
    Huang, Yunhui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 658 : 867 - 874
  • [2] Electrochemical Performances of Carbon-Coated Li[Li0.29Mn0.57Co0.14]O2 Cathode Materials for Lithium-ion Batteries
    Yu, Zhiyong
    Liu, Jun
    Wang, Zhuang
    Li, Wenji
    Hao, Jishen
    Liu, Hanxing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4216 - 4225
  • [3] Facile synthesis of lithium-rich layered oxide Li[Li0.2Ni0.2Mn0.6]O2 as cathode of lithium-ion batteries with improved cyclic performance
    Xingde Xiang
    Weishan Li
    Journal of Solid State Electrochemistry, 2015, 19 : 221 - 227
  • [4] Facile synthesis of lithium-rich layered oxide Li[Li0.2Ni0.2Mn0.6]O2 as cathode of lithium-ion batteries with improved cyclic performance
    Xiang, Xingde
    Li, Weishan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (01) : 221 - 227
  • [5] High electrochemical performance of lithium-rich Li1.2Mn0.54NixCoyO2 cathode materials for lithium-ion batteries
    Zhang, Linsen
    Wang, Huan
    Wang, Lizhen
    Fang, Hua
    Li, Xiaofeng
    Gao, Haili
    Zhang, Aiqin
    Song, Yanhua
    MATERIALS LETTERS, 2016, 185 : 100 - 103
  • [6] Electrochemical behavior of lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O2 cathode material for lithium-ion battery
    Rong-Min Gu
    Su-Yuan Yan
    Shuai Sun
    Cheng-Yang Wang
    Ming-Wei Li
    Journal of Solid State Electrochemistry, 2015, 19 : 1659 - 1669
  • [7] Electrochemical behavior of lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O2 cathode material for lithium-ion battery
    Gu, Rong-Min
    Yan, Su-Yuan
    Sun, Shuai
    Wang, Cheng-Yang
    Li, Ming-Wei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (06) : 1659 - 1669
  • [8] Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium ion batteries
    Li, Xiangjun
    Xin, Hongxing
    Liu, Yongfei
    Li, Di
    Yuan, Xueqin
    Qin, Xiaoying
    RSC ADVANCES, 2015, 5 (56) : 45351 - 45358
  • [9] A Layered Lithium-Rich Li(Li0.2Ni0.15Mn0.55Co0.1)O2 Cathode Material: Surface Phase Modification and Enhanced Electrochemical Properties for Lithium-Ion Batteries
    Zhang, Li
    He, Wei
    Peng, Dong-Liang
    Xie, Qingshui
    Xie, Rong-Jun
    CHEMELECTROCHEM, 2019, 6 (05) : 1542 - 1551
  • [10] Optimization mechanism of Li2ZrO3-modified lithium-rich cathode material Li[Li0.2Ni0.2Mn0.6]O2 for lithium-ion batteries
    Zhao, Taolin
    Shen, Jiangang
    Ji, Rixin
    Zhang, Yueting
    Wang, Yuhua
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (07) : 8603 - 8614