FUSION OF SENTINEL-1A AND LANDSAT-8 IMAGES FOR IMPROVING LAND USE/LAND COVER CLASSIFICATION IN SONGKLA PROVINCE, THAILAND

被引:12
|
作者
Nuthammachot, N. [1 ]
Stratoulias, D. [2 ,3 ]
机构
[1] Prince Songkla Univ, Fac Environm Management, POB 50 Kor Hong, Hat Yai 90112, Songkhla, Thailand
[2] Ton Duc Thang Univ, Dept Management Sci & Technol Dev, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Appl Sci, Ho Chi Minh City, Vietnam
来源
关键词
multi-source data fusion; resolution merge; SAR; optical; LULC; AREA; SAR;
D O I
10.15666/aeer/1702_31233135
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The objective of this study is to compare the performance of different data fusion techniques for improving the land use/land cover types classification accuracy in Hat Yai district, Songkla province, Thailand SAR Sentinel-1A and optical Landsat-8 satellites are used as standalone inputs as well as to perform a data fusion based on the resolution merge and LMVM techniques. The four input datasets are classified with a supervised maximum likelihood algorithm and compared against base land cover maps; the results indicate that resolution merge of optical and SAR satellite images can significantly improve the interpretation and classification accuracy of land cover and land use types at the area of interest.
引用
收藏
页码:3123 / 3135
页数:13
相关论文
共 50 条
  • [1] Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis
    Varade, Divyesh
    Sure, Anudeep
    Dikshit, Onkar
    GEOCARTO INTERNATIONAL, 2019, 34 (14) : 1552 - 1567
  • [2] ASSESSMENT OF CLASSIFICATION ACCURACIES OF SENTINEL-2 AND LANDSAT-8 DATA FOR LAND COVER/USE MAPPING
    Topaloglu, Raziye Hale
    Sertel, Elif
    Musaoglu, Nebiye
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 1055 - 1059
  • [3] PIXEL-BASED CLASSIFICATION ANALYSIS OF LAND USE LAND COVER USING SENTINEL-2 AND LANDSAT-8 DATA
    Sekertekin, A.
    Marangoz, A. M.
    Akcin, H.
    4TH INTERNATIONAL GEOADVANCES WORKSHOP - GEOADVANCES 2017: ISPRS WORKSHOP ON MULTI-DIMENSIONAL & MULTI-SCALE SPATIAL DATA MODELING, 2017, 42-4 (W6): : 91 - 93
  • [4] COMPARISON OF THE CLASSIFICATION OF LAND USE AND COVERAGE IN LANDSAT-8 AND SENTINEL-2 IMAGES IN THE CERRADO MARENHENSE
    Pereira, Paulo Roberto Mendes
    Oliveira, Mariana Monteiro Navarro de
    Bolfe, Edson Luis
    Macarringue, Lucrencio Silvestre
    GEO UERJ, 2023, (42):
  • [5] Evaluating Landsat-8, Landsat-9 and Sentinel-2 imageries in land use and land cover (LULC) classification in a heterogeneous urban area
    Jombo, Simbarashe
    Adelabu, Samuel
    GEOJOURNAL, 2023, 88 (Suppl 1) : 377 - 399
  • [6] Evaluating Landsat-8, Landsat-9 and Sentinel-2 imageries in land use and land cover (LULC) classification in a heterogeneous urban area
    Simbarashe Jombo
    Samuel Adelabu
    GeoJournal, 2023, 88 : 377 - 399
  • [7] LAND USE AND LAND COVER CLASSIFICATION IN SAO PAULO, BRAZIL, USING LANDSAT-8 OLI IMAGES AND DERIVED SPECTRAL INDICES
    Da Silva, Gabriel M.
    Arai, Egidio
    Hoffmann, Tania B.
    Duarte, Valdete
    Martini, Paulo R.
    Dutra, Andeise C.
    Mataveli, Guilherme
    Cassol, Henrique L. G.
    Shimabukuro, Yosio E.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2961 - 2964
  • [8] Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification
    Zhou, Tao
    Li, Zhaofu
    Pan, Jianjun
    SENSORS, 2018, 18 (02)
  • [9] Fusion of RADARSAT-2 Imagery with LANDSAT-8 Multispectral Data for Improving Land Cover Classification Performance Using SVM
    Sukawattanavijit, Chanika
    Chen, Jie
    2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 567 - 572
  • [10] Mapping Land use/land cover using a combination of Radar Sentinel-1A and Sentinel-2A optical images.
    Nguyen, T. T. H.
    Chau, T. N. Q.
    Pham, T. A.
    Tran, T. X. P.
    Phan, T. H.
    Pham, T. M. T.
    ENVIRONMENT, RESOURCES, AND EARTH SCIENCES, 2021, 652