A class of one parameter conjugate gradient methods

被引:1
|
作者
Yao, Shengwei [1 ]
Lu, Xiwen [2 ]
Ning, Liangshuo [1 ]
Li, Feifei [1 ]
机构
[1] Guangxi Univ Finance & Econ, Sch Informat & Stat, Nanning 530003, Peoples R China
[2] E China Univ Sci & Technol, Sch Sci, Shanghai 200237, Peoples R China
关键词
Unconstrained optimization; Continuous optimization; Conjugate gradient method; Global convergence; Wolfe line search; CONVERGENCE PROPERTIES; DESCENT;
D O I
10.1016/j.amc.2015.05.115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a class of one parameter conjugate gradient methods, which can be regarded as some kinds of convex combinations of some modified form of PRP and HS methods. The scalar beta(k) has the form of phi(k)/phi(k-1) mu(k). The convergence of the given methods is analyzed by some unified tools which show the global convergence of the proposed methods. Numerical experiments with the CUTE collections show that the proposed methods are promising. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:708 / 722
页数:15
相关论文
共 50 条
  • [1] A one-parameter class of three-term conjugate gradient methods with an adaptive parameter choice
    Yao, Shengwei
    Ning, Liangshuo
    Tu, Huonian
    Xu, Jieqiong
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (06): : 1051 - 1064
  • [2] Efficient one-parameter family of conjugate gradient methods
    Khelladi, Samia
    Benterki, Djamel
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (03): : 699 - 715
  • [3] A class of globally convergent conjugate gradient methods
    Yuhong Dai
    Yaxiang Yuan
    Science in China Series A: Mathematics, 2003, 46 : 251 - 261
  • [4] A LIMITED MEMORY CLASS OF CONJUGATE GRADIENT METHODS
    Fatemi, Masoud
    PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (03): : 457 - 475
  • [5] A class of globally convergent conjugate gradient methods
    戴彧虹
    袁亚湘
    ScienceinChina,SerA., 2003, Ser.A.2003 (02) : 251 - 261
  • [6] A class of globally convergent conjugate gradient methods
    Dai, YH
    Yuan, YX
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02): : 251 - 261
  • [7] A class of globally convergent conjugate gradient methods
    戴彧虹
    袁亚湘
    Science China Mathematics, 2003, (02) : 251 - 261
  • [8] A Class of Descent Nonlinear Conjugate Gradient Methods
    Ying, Tao
    2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 14 - 16
  • [9] A CLASS OF ITERATIVE METHODS OF CONJUGATE-GRADIENT TYPE
    LARDY, LJ
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (3-4) : 283 - 302
  • [10] A class of nonmonotone conjugate gradient methods for nonconvex functions
    Liu Y.
    Wei Z.
    Applied Mathematics-A Journal of Chinese Universities, 2002, 17 (2) : 208 - 214