Calibration Optimization Methodology for Lithium-Ion Battery Pack Model for Electric Vehicles in Mining Applications

被引:19
|
作者
Astaneh, Majid [1 ]
Andric, Jelena [1 ]
Lofdahl, Lennart [1 ]
Maggiolo, Dario [1 ]
Stopp, Peter [2 ]
Moghaddam, Mazyar [3 ]
Chapuis, Michel [3 ]
Strom, Henrik [1 ]
机构
[1] Chalmers Univ Technol, Dept Mech & Maritime Sci, S-41296 Gothenburg, Sweden
[2] Gamma Technol GmbH, Danneckerstr 37, D-70182 Stuttgart, Germany
[3] Northvolt, Gamla Brogatan 26, S-11120 Stockholm, Sweden
关键词
lithium-ion battery; battery pack; electrochemical-thermal modeling; calibration optimization; electric vehicle; ELECTROCHEMICAL-THERMAL-MODEL; FULL CELL PARAMETERIZATION; PHYSICOCHEMICAL MODEL; IDENTIFICATION; POWER; PERFORMANCE; DISCHARGE; CHARGE;
D O I
10.3390/en13143532
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Large-scale introduction of electric vehicles (EVs) to the market sets outstanding requirements for battery performance to extend vehicle driving range, prolong battery service life, and reduce battery costs. There is a growing need to accurately and robustly model the performance of both individual cells and their aggregated behavior when integrated into battery packs. This paper presents a novel methodology for Lithium-ion (Li-ion) battery pack simulations under actual operating conditions of an electric mining vehicle. The validated electrochemical-thermal models of Li-ion battery cells are scaled up into battery modules to emulate cell-to-cell variations within the battery pack while considering the random variability of battery cells, as well as electrical topology and thermal management of the pack. The performance of the battery pack model is evaluated using transient experimental data for the pack operating conditions within the mining environment. The simulation results show that the relative root mean square error for the voltage prediction is 0.7-1.7% and for the battery pack temperature 2-12%. The proposed methodology is general and it can be applied to other battery chemistries and electric vehicle types to perform multi-objective optimization to predict the performance of large battery packs.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Integration issues of lithium-ion battery into electric vehicles battery pack
    Saw, Lip Huat
    Ye, Yonghuang
    Tay, Andrew A. O.
    JOURNAL OF CLEANER PRODUCTION, 2016, 113 : 1032 - 1045
  • [2] An equivalent circuit model analysis for the lithium-ion battery pack in pure electric vehicles
    Su, Jie
    Lin, Maosong
    Wang, Shunli
    Li, Jin
    Coffie-Ken, James
    Xie, Fei
    MEASUREMENT & CONTROL, 2019, 52 (3-4): : 193 - 201
  • [3] Model based insulation fault diagnosis for lithium-ion battery pack in electric vehicles
    Wang, Yujie
    Tian, Jiaqiang
    Chen, Zonghai
    Liu, Xingtao
    MEASUREMENT, 2019, 131 : 443 - 451
  • [4] Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles
    Yun, Liu
    Duy Linh
    Shui, Li
    Peng, Xiongbin
    Garg, Akhil
    Phung, My Loan L. E.
    Asghari, Saeed
    Sandoval, Jayne
    RESOURCES CONSERVATION AND RECYCLING, 2018, 136 : 198 - 208
  • [5] A Sensor Fault Diagnosis Method for a Lithium-Ion Battery Pack in Electric Vehicles
    Xiong, Rui
    Yu, Quanqing
    Shen, Weixiang
    Lin, Cheng
    Sun, Fengchun
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (10) : 9709 - 9718
  • [6] Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles
    Tian, Jiaqiang
    Wang, Yujie
    Liu, Chang
    Chen, Zonghai
    ENERGY, 2020, 194
  • [7] Multiphysical modeling for life analysis of lithium-ion battery pack in electric vehicles
    Xia, Quan
    Yang, Dezhen
    Wang, Zili
    Ren, Yi
    Sun, Bo
    Feng, Qiang
    Qian, Cheng
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 131
  • [8] Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications
    Astaneh, Majid
    Andric, Jelena
    Löfdahl, Lennart
    Stopp, Peter
    Energy, 2022, 239
  • [9] Multiphysics simulation optimization framework for lithium-ion battery pack design for electric vehicle applications
    Astaneh, Majid
    Andric, Jelena
    Lofdahl, Lennart
    Stopp, Peter
    ENERGY, 2022, 239
  • [10] Thermal runaway behaviors of lithium-ion battery for electric vehicles: Experimental and modeling studies with realistic applications to a battery pack
    Wu, Jun
    Zhang, Xiong
    Chen, Hu
    Guo, Wei
    Yao, Jian
    Wei, Dan
    Zhu, Linpei
    Ouyang, Chenzhi
    Wang, Qingquan
    Hu, Qianqian
    Jin, Changyong
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 88