Forest-Based Semantic Role Labeling

被引:0
|
作者
Xiong, Hao [1 ]
Mi, Haitao [1 ]
Liu, Yang [1 ]
Liu, Qun [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, POB 2704, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parsing plays an important role in semantic role labeling (SRL) because most SRL systems infer semantic relations from 1-best parses. Therefore, parsing errors inevitably lead to labeling mistakes. To alleviate this problem, we propose to use packed forest, which compactly encodes all parses for a sentence. We design an algorithm to exploit exponentially many parses to learn semantic relations efficiently. Experimental results on the CoNLL-2005 shared task show that using forests achieves an absolute improvement of 1.2% in terms of F-1 score over using 1-best parses and 0.6% over using 50-best parses.
引用
收藏
页码:1039 / 1044
页数:6
相关论文
共 50 条
  • [1] The social role of the forest-based industry
    Hartung, Paulo
    O Papel, 2019, 80 (09):
  • [2] Semantic image retrieval using random forest-based AdaBoost learning
    Patil V.S.
    Deore P.J.
    International Journal of Intelligent Information and Database Systems, 2019, 12 (03) : 229 - 243
  • [3] Forest-Based Networks
    K. T. Huber
    V. Moulton
    G. E. Scholz
    Bulletin of Mathematical Biology, 2022, 84
  • [4] Forest-Based Networks
    Huber, K. T.
    Moulton, V
    Scholz, G. E.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (10)
  • [5] Fast Semantic Role Labeling for Chinese Based on Semantic Chunking
    Ding, Weiwei
    Chang, Baobao
    COMPUTER PROCESSING OF ORIENTAL LANGUAGES: LANGUAGE TECHNOLOGY FOR THE KNOWLEDGE-BASED ECONOMY, 2009, 5459 : 79 - 90
  • [6] Semantic Role Labeling
    Tellier, Isabelle
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2010, 51 (02): : 119 - 121
  • [7] Semantic Role Labeling
    Moschitti, Alessandro
    COMPUTATIONAL LINGUISTICS, 2011, 37 (03) : 619 - 622
  • [8] Is this network proper forest-based?
    Huber, Katharina T.
    van Iersel, Leo
    Moulton, Vincent
    Scholz, Guillaume E.
    INFORMATION PROCESSING LETTERS, 2025, 187
  • [9] Forest-based Deep Recommender
    Feng, Chao
    Lian, Defu
    Liu, Zheng
    Xie, Xing
    Wu, Le
    Chen, Enhong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 523 - 532
  • [10] The Future Role of Forest-Based Biofuels: Industrial Impacts in the Nordic Countries
    Ogner Jastad, Eirik
    Folsland Bolkesjo, Torjus
    Rorstad, Per Kristian
    Midttun, Atle
    Sandquist, Judit
    Tromborg, Erik
    ENERGIES, 2021, 14 (08)