Local Unfolding Is Required for the Site-Specific Protein Modification by Transglutaminase

被引:49
|
作者
Spolaore, Barbara [1 ]
Raboni, Samanta [1 ]
Molina, Amparo Ramos [1 ]
Satwekar, Abhijeet [1 ]
Damiano, Nunzio [1 ]
Fontana, Angelo [1 ]
机构
[1] Univ Padua, CRIBI Biotechnol Ctr, I-35121 Padua, Italy
关键词
BOVINE ALPHA-LACTALBUMIN; CARBOXYL-TERMINAL FRAGMENT; NMR SOLUTION STRUCTURE; MICROBIAL TRANSGLUTAMINASE; MOLTEN GLOBULE; LIMITED PROTEOLYSIS; SUBSTRATE SPECIFICITIES; INTRINSIC DISORDER; THERMOLYSIN; PEPTIDE;
D O I
10.1021/bi301005z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transglutaminase (TGase) from Streptomyces mobaraensis catalyzes transamidation reactions in a protein substrate leading to the modification of the side chains of Gln and Lys residues according to the A-CONH2 + H2N-B -> A-CONH-B + NH3 reaction, where both A and B can be a protein or a ligand. A noteworthy property of TGase is its susbstrate specificity, so that often only a few specific Gln or Lys residues can be modified in a globular protein. The molecular features of a globular protein dictating the site-specific reactions mediated by TGase are yet poorly understood. Here, we have analyzed the reactivity toward TGase of apomyoglobin (apoMb), alpha-lactalbumin (alpha-LA), and fragment 205-316 of thermolysin. These proteins are models of protein structure and folding that have been studied previously using the limited proteolysis technique to unravel regions of local unfolding in their amino acid sequences. The three proteins were modified by TGase at the level of Gln or Lys residues with dansylcadaverine or carbobenzoxy-L-glutaminylglycine, respectively. Despite these model proteins containing several Gln and Lys residues, the sites of TGase derivatization occur over restricted chain regions of the protein substrates. In particular, the TGase-mediated modifications occur in the "helix F" region in apoMb, in the beta-domain in apo-alpha-LA in its molten globule state, and in the N-terminal region in fragment 205-316 of thermolysin. Interestingly, the sites of limited proteolysis are located in the same chain regions of these proteins, thus providing a clear-cut demonstration that chain flexibility or local unfolding overwhelmingly dictates the site-specific modification by both TGase and a protease.
引用
收藏
页码:8679 / 8689
页数:11
相关论文
共 50 条
  • [1] Further studies on the site-specific protein modification by microbial transglutaminase
    Sato, H
    Hayashi, E
    Yamada, N
    Yatagai, M
    Takahara, Y
    BIOCONJUGATE CHEMISTRY, 2001, 12 (05) : 701 - 710
  • [2] Site-Specific and Stoichiometric Modification of Antibodies by Bacterial Transglutaminase
    Jeger, Simone
    Zimmermann, Kurt
    Blanc, Alain
    Grunberg, Jurgen
    Honer, Michael
    Hunziker, Peter
    Struthers, Harriet
    Schibli, Roger
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (51) : 9995 - 9997
  • [3] Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase
    Fontana, Angelo
    Spolaore, Barbara
    Mero, Anna
    Veronese, Francesco M.
    ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (01) : 13 - 28
  • [4] Site-specific protein propargylation using tissue transglutaminase
    Gnaccarini, Claudio
    Ben-Tahar, Wajih
    Mulani, Amina
    Roy, Isabelle
    Lubell, William D.
    Pelletier, Joelle N.
    Keillor, Jeffrey W.
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2012, 10 (27) : 5258 - 5265
  • [5] Site-specific protein labelling and immobilization mediated by microbial transglutaminase
    Oteng-Pabi, Samuel K.
    Pardin, Christophe
    Stoica, Maria
    Keillor, Jeffrey W.
    CHEMICAL COMMUNICATIONS, 2014, 50 (50) : 6604 - 6606
  • [6] Site-specific protein modification: advances and applications
    Foley, Timothy L.
    Burkart, Michael D.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2007, 11 (01) : 12 - 19
  • [7] Chemoenzymatic methods for site-specific protein modification
    Rabuka, David
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (06) : 790 - 796
  • [8] Site-Specific Protein Modification with Reducing Carbohydrates
    Wu, Qifan
    Dong, Weidong
    Miao, Hui
    Wang, Qian
    Dong, Suwei
    Xuan, Weimin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (19)
  • [9] Site-Specific Chemical Modification of Peptide and Protein by Thiazolidinediones
    Wang, Peng
    Zhang, Shumei
    Meng, Qiuyue
    Liu, Ying
    Shang, Luqing
    Yin, Zheng
    ORGANIC LETTERS, 2015, 17 (06) : 1361 - 1364
  • [10] Enabling Wittig reaction on site-specific protein modification
    Han, Ming-Jie
    Xiong, De-Cai
    Ye, Xin-Shan
    CHEMICAL COMMUNICATIONS, 2012, 48 (90) : 11079 - 11081