Removability theorems for Sobolev functions and quasiconformal maps

被引:43
|
作者
Jones, PW
Smirnov, SK
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
来源
ARKIV FOR MATEMATIK | 2000年 / 38卷 / 02期
关键词
D O I
10.1007/BF02384320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish several conditions, sufficient for a set to be (quasi) conformally removable, a property important in holomorphic dynamics. This is accomplished by proving removability theorems for Sobolev spaces in R-n. The resulting conditions are close to optimal.
引用
收藏
页码:263 / 279
页数:17
相关论文
共 50 条
  • [1] A removability theorem for Sobolev functions and detour sets
    Dimitrios Ntalampekos
    Mathematische Zeitschrift, 2020, 296 : 41 - 72
  • [2] A removability theorem for Sobolev functions and detour sets
    Ntalampekos, Dimitrios
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 41 - 72
  • [3] Removability of product sets for Sobolev functions in the plane
    Bindini, Ugo
    Rajala, Tapio
    ARKIV FOR MATEMATIK, 2023, 61 (01): : 67 - 80
  • [4] Quasiconformal removability and the quasihyperbolic metric
    Koskela, P
    Nieminen, T
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (01) : 143 - 151
  • [5] Lindelof theorems for monotone Sobolev functions
    Futamura, T
    Mizuta, Y
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2003, 28 (02) : 271 - 277
  • [6] Sobolev classes of Banach space-valued functions and quasiconformal mappings
    Heinonen, J
    Koskela, P
    Shanmugalingam, N
    Tyson, JT
    JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 : 87 - 139
  • [7] Sobolev classes of Banach space-valued functions and quasiconformal mappings
    Juha Heinonen
    Pekka Koskela
    Nageswari Shanmugalingam
    Jeremy T. Tyson
    Journal d’Analyse Mathématique, 2001, 85 (1) : 87 - 139
  • [8] Quasiconformal mappings and Sobolev spaces
    Koskela, P
    MacManus, P
    STUDIA MATHEMATICA, 1998, 131 (01) : 1 - 17
  • [9] Lindelof theorems for monotone Sobolev functions with variable exponent
    Futamura, Toshihide
    Shimomura, Tetsu
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2008, 84 (02) : 25 - 28
  • [10] LINDELOF THEOREMS FOR MONOTONE SOBOLEV FUNCTIONS IN ORLICZ SPACES
    Di Biase, Fausto
    Futamura, Toshihide
    Shimomura, Tetsu
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (04) : 1025 - 1033