The quasi-static three-dimensional problem of elasticity theory for a hyperelastic body under finite deformations, loading by bulk and surface forces, partial fastening and unilateral contact with a rigid punch and in the presence of time-dependent anisotropic Coulomb friction is considered. The equivalent variational formulation contains a quasi-variational inequality. After time discretization and application of the iteration method, the problem arising with "specified" friction is reduced to a non-convex miniumum functional problem, which is studied by Ball's scheme. The operator in contact stress space is determined. It is shown that a threshold level of the coefficient of friction corresponds to each level of loading, below which there is at least one fixed point of the operator. If the solution at a certain instant of time is known, the iteration process converges to the solution of the problem at the next, fairly close instant of time. (C) 2008 Elsevier Ltd. All rights reserved.