Static and Time-Dependent Shortest Path through an Urban Environment Time-Dependent Shortest Path

被引:0
|
作者
Alhoula, Wedad [1 ]
Hartley, Joanna [1 ]
机构
[1] Nottingham Trent Univ, Sch Sci & Technol, Nottingham NG11 8NS, England
来源
2014 SCIENCE AND INFORMATION CONFERENCE (SAI) | 2014年
关键词
k shortest path; static network; time-dependent network;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
More and more problems occur with an increasing amount of transportation on the road. These problems include pollution, accidents and traffic congestion. Road traffic congestion is a significant problem in modern society. To avoid traffic jams we need to reduce the number of vehicles on the road by encouraging the use of public transportation. Travelers require individualized, dependable route information to be persuaded to use public transportation. This can be determined through the use of shortest path algorithms to determine the optimal routes for individuals. This paper aims to evaluate two k shortest path implementations (based on Dijkstra's algorithm (1959)) in a static and time dependent network.
引用
收藏
页码:1027 / 1029
页数:3
相关论文
共 50 条
  • [1] Reversibility of the time-dependent shortest path problem
    Daganzo, CF
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2002, 36 (07) : 665 - 668
  • [2] Variable Time Discretization for a Time-Dependent Shortest Path Algorithm
    Tian, Ye
    Chiu, Yi-Chang
    Gao, Yang
    2011 14TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2011, : 588 - 593
  • [3] The time-dependent shortest path and vehicle routing problem
    Jaballah, Rabie
    Veenstra, Marjolein
    Coelho, Leandro C.
    Renaud, Jacques
    INFOR, 2021, 59 (04) : 592 - 622
  • [4] An Axiomatic Approach to Time-Dependent Shortest Path Oracles
    Spyros Kontogiannis
    Dorothea Wagner
    Christos Zaroliagis
    Algorithmica, 2022, 84 : 815 - 870
  • [5] The Shortest Path Problem on a Fuzzy Time-Dependent Network
    Huang, Wei
    Ding, Lixin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (11) : 3376 - 3385
  • [6] Algorithms for time-dependent bicriteria shortest path problems
    Hamacher, Horst W.
    Ruzika, Stefan
    Tjandra, Stevanus A.
    DISCRETE OPTIMIZATION, 2006, 3 (03) : 238 - 254
  • [7] An Axiomatic Approach to Time-Dependent Shortest Path Oracles
    Kontogiannis, Spyros
    Wagner, Dorothea
    Zaroliagis, Christos
    ALGORITHMICA, 2022, 84 (03) : 815 - 870
  • [8] Time-Dependent Shortest Path Problems with Penalties and Limits on Waiting
    He, Edward
    Boland, Natashia
    Nemhauser, George
    Savelsbergh, Martin
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (03) : 997 - 1014
  • [9] α-Reliable Shortest Path Problem in Uncertain Time-Dependent Networks
    Biswal S.
    Ghorai G.
    Mohanty S.P.
    International Journal of Applied and Computational Mathematics, 2022, 8 (4)
  • [10] Algorithm for Time-dependent Shortest Safe Path on Transportation Networks
    Wu Jigang
    Jin, Song
    Ji, Haikun
    Srikanthan, Thambipillai
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 958 - 966