Non-vanishing elements of finite groups

被引:18
|
作者
Dolfi, Silvio [2 ]
Navarro, Gabriel [3 ]
Pacifici, Emanuele [1 ]
Sanus, Lucia [3 ]
Tiep, Pham Huu [4 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[3] Univ Valencia, Dept Algebra, E-46100 Valencia, Spain
[4] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
Finite groups; Characters; Zeros of characters; CHARACTERS;
D O I
10.1016/j.jalgebra.2009.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every chi in Irr(G), we have chi (x) not equal 0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:540 / 545
页数:6
相关论文
共 50 条