Finite groups;
Characters;
Zeros of characters;
CHARACTERS;
D O I:
10.1016/j.jalgebra.2009.08.014
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every chi in Irr(G), we have chi (x) not equal 0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G. (C) 2009 Elsevier Inc. All rights reserved.
机构:
Univ Lille 1, CNRS, UMR 8524, Lab Arithmet, F-59655 Villeneuve Dascq, FranceUniv Lille 1, CNRS, UMR 8524, Lab Arithmet, F-59655 Villeneuve Dascq, France
Bourdon, M
Martin, F
论文数: 0引用数: 0
h-index: 0
机构:Univ Lille 1, CNRS, UMR 8524, Lab Arithmet, F-59655 Villeneuve Dascq, France
Martin, F
Valette, A
论文数: 0引用数: 0
h-index: 0
机构:Univ Lille 1, CNRS, UMR 8524, Lab Arithmet, F-59655 Villeneuve Dascq, France