Stationary solutions for conservation laws with singular nonlocal sources

被引:3
|
作者
Coclite, Giuseppe Maria [1 ]
Coclite, Mario Michele [1 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
关键词
Hammerstein integral equations; Singular nonlinear problems; Existence of positive solutions; Singular elliptic perturbations; INTEGRODIFFERENTIAL EQUATION; POSITIVE SOLUTIONS;
D O I
10.1016/j.jde.2009.09.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of an a.e. positive stationary solution with bounded variation in [0, 1] for an integro-differential conservation law with source depending on a function singular in the origin is proved. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:229 / 251
页数:23
相关论文
共 50 条
  • [1] Conservation laws with singular nonlocal sources
    Coclite, G. M.
    Coclite, M. M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (10) : 3831 - 3858
  • [2] Piecewise regular solutions to scalar balance laws with singular nonlocal sources
    Bociu, Lorena
    Ftaka, Evangelia
    Nguyen, Khai T.
    Schino, Jacopo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 409 : 181 - 222
  • [3] On the Singular Local Limit for Conservation Laws with Nonlocal Fluxes
    Maria Colombo
    Gianluca Crippa
    Laura V. Spinolo
    Archive for Rational Mechanics and Analysis, 2019, 233 : 1131 - 1167
  • [4] Singular limits with vanishing viscosity for nonlocal conservation laws
    De Nitti, Nicola (nicola.de.nitti@fau.de), 1600, Elsevier Ltd (211):
  • [5] CONSERVATION LAWS WITH NONLOCAL VELOCITY: THE SINGULAR LIMIT PROBLEM
    Friedrich, Jan
    Gottliich, Simone
    Keimer, Alexander
    Pflug, Lukas
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (02) : 497 - 522
  • [6] On the Singular Local Limit for Conservation Laws with Nonlocal Fluxes
    Colombo, Maria
    Crippa, Gianluca
    Spinolo, Laura V.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (03) : 1131 - 1167
  • [7] Singular limits with vanishing viscosity for nonlocal conservation laws
    Coclite, Giuseppe Maria
    De Nitti, Nicola
    Keimer, Alexander
    Pflug, Lukas
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [8] KINETIC SOLUTIONS FOR NONLOCAL STOCHASTIC CONSERVATION LAWS
    Lv, Guangying
    Gao, Hongjun
    Wei, Jinlong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (02) : 559 - 584
  • [9] Kinetic Solutions for Nonlocal Stochastic Conservation Laws
    Guangying Lv
    Hongjun Gao
    Jinlong Wei
    Fractional Calculus and Applied Analysis, 2021, 24 : 559 - 584
  • [10] KINETIC SOLUTIONS FOR NONLOCAL SCALAR CONSERVATION LAWS
    Wei, Jinlong
    Duan, Jinqiao
    Lv, Guangying
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) : 1521 - 1543