Adomian Decomposition Method for the One-dimensional Nonlocal Fisher-Kolmogorov-Petrovsky-Piskunov Equation

被引:6
|
作者
Shapovalov, A., V [1 ,2 ]
Trifonov, A. Yu [2 ,3 ]
机构
[1] Natl Res Tomsk State Univ, Tomsk, Russia
[2] Tomsk State Pedag Univ, Tomsk, Russia
[3] Natl Res Tomsk Polytech Univ, Tomsk, Russia
关键词
nonlocal generalized Fisher-Kolmogorov-Petrovsky-Piskunov equation; approximate solutions; Adomian's decomposition method; diffusion propagator; BOUNDARY-VALUE-PROBLEMS; NONLINEARITY;
D O I
10.1007/s11182-019-01768-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Adomian decomposition method is applied to construct an approximate solution of the generalized one-dimensional Fisher-Kolmogorov-Petrovsky-Piskunov equation describing the population dynamics with nonlocal competitive losses. An approximate solution is constructed in the class of decreasing functions. The diffusion operator is taken as a reversible linear operator. The inverse operator is presented in terms of the diffusion propagator. An example of the approximate solution of the Cauchy problem for the function of competitive losses and for the initial function of the Gaussian type is considered.
引用
收藏
页码:710 / 719
页数:10
相关论文
共 50 条
  • [1] Adomian Decomposition Method for the One-dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Russian Physics Journal, 2019, 62 : 710 - 719
  • [2] Examples of Asymptotic Solutions Obtained by the Complex Germ Method for the One-Dimensional Nonlocal Fisher-Kolmogorov-Petrovsky-Piskunov Equation
    Siniukov, S. A.
    Trifonov, A. Yu
    Shapovalov, A., V
    RUSSIAN PHYSICS JOURNAL, 2021, 64 (08) : 1542 - 1552
  • [3] An Unconditionally Stable Positivity-Preserving Scheme for the One-Dimensional Fisher-Kolmogorov-Petrovsky-Piskunov Equation
    Kim, Sangkwon
    Lee, Chaeyoung
    Lee, Hyun Geun
    Kim, Hyundong
    Kwak, Soobin
    Hwang, Youngjin
    Kang, Seungyoon
    Ham, Seokjun
    Kim, Junseok
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [4] Examples of Asymptotic Solutions Obtained by the Complex Germ Method for the One-Dimensional Nonlocal Fisher–Kolmogorov–Petrovsky–Piskunov Equation
    S. A. Siniukov
    A. Yu. Trifonov
    A. V. Shapovalov
    Russian Physics Journal, 2021, 64 : 1542 - 1552
  • [5] Quasiparticles for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation
    Kulagin, Anton E.
    Shapovalov, Alexander, V
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [6] Adomyan Decomposition Method for a Two-Component Nonlocal Reaction-Diffusion Model of the Fisher-Kolmogorov-Petrovsky-Piskunov Type
    Shapovalov, A. V.
    Trifonov, A. Yu.
    RUSSIAN PHYSICS JOURNAL, 2019, 62 (05) : 835 - 847
  • [7] Solving nonlinear Fisher-Kolmogorov-Petrovsky-Piskunov equation using two meshless methods
    Benito, J. J.
    Garcia, A.
    Negreanu, M.
    Urena, F.
    Vargas, A. M.
    COMPUTATIONAL PARTICLE MECHANICS, 2024, 11 (06) : 2373 - 2379
  • [8] Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomy
    El-Hachem, Maud
    McCue, Scott W.
    Jin, Wang
    Du, Yihong
    Simpson, Matthew J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2229):
  • [9] Fisher-Kolmogorov-Petrovsky-Piskunov dynamics mediated by a parent field with a delay
    Stanley, Steffanie
    Kogan, Oleg
    PHYSICAL REVIEW E, 2021, 104 (03)
  • [10] Pattern Formation in a Nonlocal Fisher-Kolmogorov-Petrovsky-Piskunov Model and in a Nonlocal Model of the Kinetics of an Metal Vapor Active Medium
    Shapovalov, A., V
    Kulagin, A. E.
    Siniukov, S. A.
    RUSSIAN PHYSICS JOURNAL, 2022, 65 (04) : 695 - 702