Linear open quantum systems with passive Hamiltonians and a single local dissipative process

被引:2
|
作者
Ma, Shan [1 ,2 ]
Woolley, Matthew J. [2 ]
Petersen, Ian R. [3 ]
Yamamoto, Naoki [4 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[3] Australian Natl Univ, Res Sch Elect Energy & Mat Engn, Canberra, ACT 2601, Australia
[4] Keio Univ, Dept Appl Phys & Physicoinformat, Yokohama, Kanagawa 2238522, Japan
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Linear open quantum system; Covariance assignment; Pure Gaussian state; Passive Hamiltonian; Local dissipative process; State preparation;
D O I
10.1016/j.automatica.2020.109477
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider linear open quantum systems with passive Hamiltonians and a single, local dissipative process. Generally speaking, these systems are easier to implement than systems with active Hamiltonians and non-local dissipative processes. We parametrize the set of all covariance matrices corresponding to pure Gaussian steady states that can be achieved by this type of quantum system. Given such pure states, we parametrize the corresponding linear quantum systems with passive Hamiltonians and a single, local dissipative process that generate them. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Pure Gaussian quantum states from passive Hamiltonians and an active local dissipative process
    Ma, Shan
    Woolley, Matthew J.
    Petersen, Ian R.
    Yamamoto, Naoki
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2519 - 2522
  • [2] Linear quantum systems with diagonal passive Hamiltonian and a single dissipative channel
    Ma, Shan
    Petersen, Ian R.
    Woolley, Matthew J.
    SYSTEMS & CONTROL LETTERS, 2017, 99 : 64 - 71
  • [3] On local Hamiltonians and dissipative systems
    Castagnino, M.
    Gadella, M.
    Lara, L. P.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (03) : 542 - 551
  • [4] Linear Passive Open Quantum Systems
    Ma, Shan
    Shu, Chuan-Cun
    Xiang, Chengdi
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6933 - 6937
  • [5] OPEN QUANTUM SYSTEMS WITH TIME-DEPENDENT HAMILTONIANS AND THEIR LINEAR RESPONSE
    DAVIES, EB
    SPOHN, H
    JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (05) : 511 - 523
  • [6] Dissipative linear response theory and its appications in open quantum systems
    Yu, Chen
    ACTA PHYSICA SINICA, 2021, 70 (23)
  • [7] Phase space theory for open quantum systems with local and collective dissipative processes
    Merkel, Konrad
    Link, Valentin
    Luoma, Kimmo
    Strunz, Walter T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (03)
  • [8] Solutions to linear dissipative quantum systems
    Lopez, P. C.
    Santos-Silva, R.
    Garcia, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (05)
  • [9] Stability of Local Quantum Dissipative Systems
    Cubitt, Toby S.
    Lucia, Angelo
    Michalakis, Spyridon
    Perez-Garcia, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (03) : 1275 - 1315
  • [10] Stability of Local Quantum Dissipative Systems
    Toby S. Cubitt
    Angelo Lucia
    Spyridon Michalakis
    David Perez-Garcia
    Communications in Mathematical Physics, 2015, 337 : 1275 - 1315