The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500

被引:989
作者
Meinshausen, Malte [1 ,2 ,3 ]
Nicholls, Zebedee R. J. [1 ,2 ]
Lewis, Jared [1 ]
Gidden, Matthew J. [4 ,5 ]
Vogel, Elisabeth [1 ,2 ]
Freund, Mandy [1 ,6 ]
Beyerle, Urs [7 ]
Gessner, Claudia [7 ]
Nauels, Alexander [1 ,5 ]
Bauer, Nico [3 ]
Canadell, Josep G. [8 ]
Daniel, John S. [9 ]
John, Andrew [1 ,10 ]
Krummel, Paul B. [11 ]
Luderer, Gunnar [3 ]
Meinshausen, Nicolai [12 ]
Montzka, Stephen A. [13 ]
Rayner, Peter J. [1 ,2 ]
Reimann, Stefan [14 ]
Smith, Steven J. [15 ]
van den Berg, Marten [16 ]
Velders, Guus J. M. [17 ,18 ]
Vollmer, Martin K. [14 ]
Wang, Ray H. J. [19 ]
机构
[1] Univ Melbourne, Climate & Energy Coll, Parkville, Vic, Australia
[2] Univ Melbourne, Sch Earth Sci, Parkville, Vic, Australia
[3] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany
[4] IIASA Inst Appl Syst Anal, Laxenburg, Austria
[5] Climate Analyt, Berlin, Germany
[6] CSIRO Agr & Food, Melbourne, Vic, Australia
[7] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
[8] CSIRO Oceans & Atmosphere, Global Carbon Project, Canberra, ACT, Australia
[9] NOAA, Earth Syst Res Lab, Chem Sci Lab, Boulder, CO USA
[10] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic, Australia
[11] CSIRO Oceans & Atmosphere, Climate Sci Ctr, Aspendale, Vic, Australia
[12] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Seminar Stat, Zurich, Switzerland
[13] NOAA, Global Monitoring Lab, Boulder, CO USA
[14] Empa, Lab Air Pollut Environm Technol, Swiss Fed Labs Mat Sci & Technol, Dubendorf, Switzerland
[15] Pacific Northwest Natl Lab, Joint Global Change Res Inst, College Pk, MD USA
[16] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands
[17] Natl Inst Publ Hlth & Environm RIVM, Bilthoven, Netherlands
[18] Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Utrecht, Netherlands
[19] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA
基金
澳大利亚研究理事会;
关键词
CARBON-CYCLE MODELS; NORTHERN ECOSYSTEMS; ATMOSPHERIC METHANE; GLOBAL EMISSIONS; SIMPLER MODEL; CLIMATE; CO2; INCREASE; EXCHANGE; CHLOROFLUOROCARBONS;
D O I
10.5194/gmd-13-3571-2020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socioeconomic pathway (SSP) scenarios, each of which represents a different future socio-economic projection and political environment. Here, we provide the greenhouse gas concentrations for these SSP scenarios - using the reduced-complexity climate-carbon-cycle model MAGICC7.0. We extend historical, observationally based concentration data with SSP con- centration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5) emission scenarios, respectively. We also provide the concentration extensions beyond 2100 based on assumptions regarding the trajectories of fossil fuels and land use change emissions, net negative emissions, and the fraction of non-CO2 emissions. By 2150, CO2 concentrations in the lowest emission scenario are approximately 350 ppm and approximately plateau at that level until 2500, whereas the highest fossil-fuel-driven scenario projects CO2 concentrations of 1737 ppm and reaches concentrations beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total radiative forcing contribution of all considered 43 long-lived greenhouse gases increases from 66 % for the present day to roughly 68 % to 85 % by the time of maximum forcing in the 21st century. For this estimation, we updated simple radiative forcing parameterizations that reflect the Oslo Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced and extend to lower 2100 radiative forcing and temperatures. Performing two pairs of six-member historical ensembles with CESM1.2.2, we estimate the effect on surface air temperatures of applying latitudinally and seasonally resolved GHG concentrations. We find that the ensemble differences in the March-April-May (MAM) season provide a regional warming in higher northern latitudes of up to 0.4 K over the historical period, latitudinally averaged of about 0.1 K, which we estimate to be comparable to the upper bound (similar to 5 % level) of natural variability. In comparison to the comparatively straight line of the last 2000 years, the greenhouse gas concentrations since the onset of the industrial period and this studies' projections over the next 100 to 500 years unequivocally depict a "hockey-stick" upwards shape. The SSP concentration time series derived in this study provide a harmonized set of input assumptions for long-term climate science analysis; they also provide an indication of the wide set of futures that societal developments and policy implementations can lead to - ranging from multiple degrees of future warming on the one side to approximately 1.5 degrees C warming on the other.
引用
收藏
页码:3571 / 3605
页数:35
相关论文
共 77 条
[1]  
[Anonymous], 2006, SCI ASSESSMENT OZONE
[2]  
[Anonymous], Global Ozone Research and Monitoring Project-Report No. 47
[3]   Assessment of the Jason-2 Extension to the TOPEX/Poseidon, Jason-1 Sea-Surface Height Time Series for Global Mean Sea Level Monitoring [J].
Beckley, B. D. ;
Zelensky, N. P. ;
Holmes, S. A. ;
Lemoine, F. G. ;
Ray, R. D. ;
Mitchum, G. T. ;
Desai, S. D. ;
Brown, S. T. .
MARINE GEODESY, 2010, 33 :447-471
[4]   Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 [J].
Brohan, P. ;
Kennedy, J. J. ;
Harris, I. ;
Tett, S. F. B. ;
Jones, P. D. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D12)
[5]   Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland [J].
Buizert, C. ;
Martinerie, P. ;
Petrenko, V. V. ;
Severinghaus, J. P. ;
Trudinger, C. M. ;
Witrant, E. ;
Rosen, J. L. ;
Orsi, A. J. ;
Rubino, M. ;
Etheridge, D. M. ;
Steele, L. P. ;
Hogan, C. ;
Laube, J. C. ;
Sturges, W. T. ;
Levchenko, V. A. ;
Smith, A. M. ;
Levin, I. ;
Conway, T. J. ;
Dlugokencky, E. J. ;
Lang, P. M. ;
Kawamura, K. ;
Jenk, T. M. ;
White, J. W. C. ;
Sowers, T. ;
Schwander, J. ;
Blunier, T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (09) :4259-4277
[6]   Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate [J].
Butchart, N ;
Scaife, AA .
NATURE, 2001, 410 (6830) :799-802
[7]   AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6 [J].
Collins, William J. ;
Lamarque, Jean-Franois ;
Schulz, Michael ;
Boucher, Olivier ;
Eyring, Veronika ;
Hegglin, Michaela I. ;
Maycock, Amanda ;
Myhre, Gunnar ;
Prather, Michael ;
Shindell, Drew ;
Smith, Steven J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (02) :585-607
[8]   In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences [J].
Cunnold, DM ;
Steele, LP ;
Fraser, PJ ;
Simmonds, PG ;
Prinn, RG ;
Weiss, RF ;
Porter, LW ;
O'Doherty, S ;
Langenfelds, RL ;
Krummel, PB ;
Wang, HJ ;
Emmons, L ;
Tie, XX ;
Dlugokencky, EJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D14)
[9]  
Department of Energy, 2020, LAWR LIV NAT LAB EAR
[10]  
Dlugokencky E.J., 2015, Atmospheric methane dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network