A posteriori error control for stationary coupled bulk-surface equations

被引:0
|
作者
Eigel, Martin [1 ]
Mueller, Rudiger [1 ]
机构
[1] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
关键词
a posteriori; error analysis; finite element method; coupled bulk-surface; adaptivity; FINITE-ELEMENT-METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; IMPLICITLY DEFINED SURFACES; LAPLACE-BELTRAMI OPERATOR; ELLIPTIC PROBLEMS; PDES; APPROXIMATION; INTERPOLATION;
D O I
10.1093/imanum/drw080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of two coupled elliptic equations, one defined on a bulk domain and the other one on the boundary surface. Problems of this kind are relevant for applications in engineering, chemistry and in biology, e.g., biological signal transduction. For the a posteriori error control of the coupled system, a residual error estimator is derived which takes into account the approximation errors due to the finite element discretization in space as well as the polyhedral approximation of the surface. An adaptive refinement algorithm controls the overall error. Numerical experiments illustrate the performance of the a posteriori error estimator and the proposed adaptive algorithm with several benchmark examples.
引用
收藏
页码:271 / 298
页数:28
相关论文
共 50 条
  • [1] A coupled bulk-surface model for cell polarisation
    Cusseddu, D.
    Edelstein-Keshet, L.
    Mackenzie, J. A.
    Portet, S.
    Madzvamuse, A.
    JOURNAL OF THEORETICAL BIOLOGY, 2019, 481 : 119 - 135
  • [2] AN A POSTERIORI ERROR ANALYSIS FOR THE EQUATIONS OF STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
    Chaudhry, Jehanzeb H.
    Rappaport, Ari E.
    Shadid, John N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : B354 - B380
  • [3] Cut finite element methods for coupled bulk-surface problems
    Burman, Erik
    Hansbo, Peter
    Larson, Mats G.
    Zahedi, Sara
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 203 - 231
  • [4] A Cut Discontinuous Galerkin Method for Coupled Bulk-Surface Problems
    Massing, Andre
    GEOMETRICALLY UNFITTED FINITE ELEMENT METHODS AND APPLICATIONS, 2017, 121 : 259 - 279
  • [5] Kernel-Based Meshless Collocation Methods for Solving Coupled Bulk-Surface Partial Differential Equations
    Chen, Meng
    Ling, Leevan
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 375 - 391
  • [6] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [7] Finite element analysis for a coupled bulk-surface partial differential equation
    Elliott, Charles M.
    Ranner, Thomas
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 377 - 402
  • [8] ANALYSIS OF THE DIFFUSE DOMAIN APPROACH FOR A BULK-SURFACE COUPLED PDE SYSTEM
    Abels, Helmut
    Lam, Kei Fong
    Stinner, Bjoern
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) : 3687 - 3725
  • [9] An Unfitted dG Scheme for Coupled Bulk-Surface PDEs on Complex Geometries
    Engwer, Christian
    Westerheide, Sebastian
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (03) : 569 - 591
  • [10] The bulk-surface finite element method for reaction-diffusion systems on stationary volumes
    Madzyamuse, Anotida
    Chung, Andy H. W.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2016, 108 : 9 - 21