The Benefits of Fixed Item Parameter Calibration for Parameter Accuracy in Small Sample Situations in Large-Scale Assessments

被引:9
|
作者
Koenig, Christoph [1 ]
Khorramdel, Lale [2 ]
Yamamoto, Kentaro [2 ]
Frey, Andreas [1 ,3 ]
机构
[1] Goethe Univ Frankfurt Am Main, Dept Educ Psychol, Theodor W Adorno Pl 6, D-60629 Frankfurt, Hesse, Germany
[2] Educ Testing Serv, 660 Rosedale Rd, Princeton, NJ 08541 USA
[3] Univ Oslo, Ctr Educ Measurement, Postboks 1161 Blindern, N-0318 Oslo, Norway
关键词
large-scale assessments; small sample; item response theory; PISA; item calibration; LINKING; MODEL; PISA; CONSEQUENCES; FIT;
D O I
10.1111/emip.12381
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Large-scale assessments such as the Programme for International Student Assessment (PISA) have field trials where new survey features are tested for utility in the main survey. Because of resource constraints, there is a trade-off between how much of the sample can be used to test new survey features and how much can be used for the initial item response theory (IRT) scaling. Utilizing real assessment data of the PISA 2015 Science assessment, this article demonstrates that using fixed item parameter calibration (FIPC) in the field trial yields stable item parameter estimates in the initial IRT scaling for samples as small asn= 250 per country. Moreover, the results indicate that for the recovery of the county-specific latent trait distributions, the estimates of the trend items (i.e., the information introduced into the calibration) are crucial. Thus, concerning the country-level sample size ofn= 1,950 currently used in the PISA field trial, FIPC is useful for increasing the number of survey features that can be examined during the field trial without the need to increase the total sample size. This enables international large-scale assessments such as PISA to keep up with state-of-the-art developments regarding assessment frameworks, psychometric models, and delivery platform capabilities.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 50 条
  • [1] Item Parameter Drift in Context Questionnaires from International Large-Scale Assessments
    Lee, HyeSun
    Geisinger, Kurt F.
    INTERNATIONAL JOURNAL OF TESTING, 2019, 19 (01) : 23 - 51
  • [2] Neural parameter calibration for large-scale multiagent models
    Gaskin, Thomas
    Pavliotis, Grigorios A.
    Girolam, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (07)
  • [3] Effects of Design Properties on Parameter Estimation in Large-Scale Assessments
    Hecht, Martin
    Weirich, Sebastian
    Siegle, Thilo
    Frey, Andreas
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2015, 75 (06) : 1021 - 1044
  • [4] Bias and Linking Error in Fixed Item Parameter Calibration
    Robitzsch, Alexander
    APPLIEDMATH, 2024, 4 (03): : 1181 - 1191
  • [5] Fixed item parameter calibration for assessing differential item functioning in computerized adaptive tests
    Gonzalez-Betanzos, F.
    Abad, F. J.
    Barrada, J. R.
    PSICOLOGICA, 2014, 35 (02): : 331 - 359
  • [6] NONSTATIONARY PARAMETER ESTIMATION FOR SMALL SAMPLE SITUATIONS - COMPARISON OF METHODS
    BENNETT, RJ
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1976, 7 (03) : 257 - 275
  • [7] Detecting Item Parameter Drift in Small Sample Rasch Equating
    Jurich, Daniel
    Liu, Chunyan
    APPLIED MEASUREMENT IN EDUCATION, 2023, 36 (04) : 326 - 339
  • [8] An Optimized Bayesian Hierarchical Two-Parameter Logistic Model for Small-Sample Item Calibration
    Koenig, Christoph
    Spoden, Christian
    Frey, Andreas
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2020, 44 (04) : 311 - 326
  • [9] Small sample estimation in dichotomous item response models: Effect of priors based on judgmental information on the accuracy of item parameter estimates
    Swaminathan, H
    Hambleton, RK
    Sireci, SG
    Xing, DH
    Rizavi, SM
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2003, 27 (01) : 27 - 51
  • [10] Flexible method for improved transmitter parameter calibration in accurate large-scale positioning system
    Liu, Qing
    Ren, Huashuai
    Jia, Kun
    Pan, Xiao
    Zhang, Jie
    Liu, Haolin
    OPTICAL ENGINEERING, 2019, 58 (06)