Tin alloy-graphite composite anode for lithium-ion batteries

被引:65
|
作者
Ulus, A [1 ]
Rosenberg, Y
Burstein, L
Peled, E
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Wolfson Appl Mat Res Ctr, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1149/1.1469029
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A composite anode material was prepared that contains nanosize (<100 nm) particles of tin alloy Sn65Sb18Cu17 and Sn62Sb21Cu17. The alloys were electroplated at high current densities (above i(L)) from aqueous solutions, directly onto the copper current collector, and were coated by a polyvinylidene fluoride-graphite matrix at a ratio of alloy: graphite matrix 70:30 and 80:20 w/w, respectively. The processes involved in electrode production by this method are inexpensive, simple, and fast. Over 40 (100% depth of discharge) cycles were demonstrated, in half-cell, and over 30 were demonstrated with a LiCoO2 battery containing 1 M LiPF6 ethylene carbonate-diethyl carbonate electrolyte. The faradaic efficiency (Q(De-ins)/Q(Ins)) is less than 100%. Lithium is fully deinserted from the host matrix only when the anode is cycled at low current densities. The kinetics of lithium insertion to and deinsertion from the composite anode material, slow gradually as the cycle number increases. X-ray diffraction patterns of the anode material show that the alloy becomes amorphous during cycling, while the graphite does not. X-ray photoelectron-spectroscopy measurements reveal that the solid electrolyte interphase consists of mainly LiF, small amounts of Li2O, and possibly, polymeric substances. The electrochemical behavior of the alloy changes with cycle number, while that of the graphite does not. The fall of the deinsertion capacity of the graphite from the first cycle to the 34th by more than 50% proves that the active material in the anode suffers from particle-to-particle break off. (C) 2002 The Electrochemical Society.
引用
收藏
页码:A635 / A643
页数:9
相关论文
共 50 条
  • [1] Carbon-coated Ni20Si80 alloy-graphite composite as an anode material for lithium-ion batteries
    Lee, HY
    Kim, YL
    Hong, MK
    Lee, SM
    JOURNAL OF POWER SOURCES, 2005, 141 (01) : 159 - 162
  • [2] Composite of graphite/phosphorus as anode for lithium-ion batteries
    Bai, Aojun
    Wang, Li
    Li, Yang
    He, Xiangming
    Wang, Jixian
    Wang, Jianlong
    JOURNAL OF POWER SOURCES, 2015, 289 : 100 - 104
  • [3] Graphite-graphene composite as an anode for lithium-ion batteries
    Strativnov E.
    Khovavko A.
    Nie G.
    Ji P.-G.
    Applied Nanoscience (Switzerland), 2023, 13 (12): : 7531 - 7536
  • [4] Preparation and electrochemical characterization of tin/graphite/silver composite as anode materials for lithium-ion batteries
    Wang, Xiuyan
    Wen, Zhaoyin
    Lin, Bin
    Lin, Jiu
    Wu, Xiangwei
    Xu, Xiaogang
    JOURNAL OF POWER SOURCES, 2008, 184 (02) : 508 - 512
  • [5] Graphite-Tin composites as anode materials for lithium-ion batteries
    Wang, GX
    Ahn, JH
    Lindsay, MJ
    Sun, L
    Bradhurst, DH
    Dou, SX
    Liu, HK
    JOURNAL OF POWER SOURCES, 2001, 97-8 : 211 - 215
  • [6] Synthesis of Carbon/Tin Composite Anode Materials for Lithium-Ion Batteries
    Li, Meng-Yuan
    Wang, Yan
    Liu, Chun-Ling
    Zhang, Cheng
    Dong, Wen-Sheng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : A91 - A97
  • [7] Electrochemical properties of Si/Ni alloy-graphite composite as an anode material for Li-ion batteries
    Park, MS
    Lee, YJ
    Rajendran, S
    Song, MS
    Kim, HS
    Lee, JY
    ELECTROCHIMICA ACTA, 2005, 50 (28) : 5561 - 5567
  • [8] Si-Ni alloy-graphite composite synthesized by arc-melting and high-energy mechanical milling for use as an anode in lithium-ion batteries
    Park, Min-Sik
    Rajendran, S.
    Kang, Yong-Mook
    Han, Kyu-Sung
    Han, Young-Soo
    Lee, Jai-Young
    JOURNAL OF POWER SOURCES, 2006, 158 (01) : 650 - 653
  • [9] Tin oxide-graphite composite for lithium storage material in lithium-ion batteries
    Zhang, XJ
    Huang, ST
    Wu, GL
    Lu, SG
    Cai, ZP
    RARE METALS, 2003, 22 (03) : 226 - 229
  • [10] Tin oxide-graphite composite for lithium storage material in lithium-ion batteries
    ZHANG Xiangjun
    RareMetals, 2003, (03) : 226 - 229