Shape optimisation by the boundary element method: a comparison between mathematical programming and normal movement approaches

被引:10
|
作者
Parvizian, J [1 ]
Fenner, RT [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,DEPT MECH ENGN,LONDON SW7 2BX,ENGLAND
关键词
shape optimisation; boundary element; loading disk; perforated plate;
D O I
10.1016/S0955-7997(97)00013-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this work is to find the best boundary shape of a structural component under certain loading, to have minimum weight, or uniformly distributed equivalent stresses. Two shape optimisation algorithms are developed. One of them is a mathematical programming method, and considers nodal coordinates on the design boundary directly as the design variables, while the other one is rather an optimality criterion approach, based on normal movement of the design boundary. Solving the optimisation problem of stress concentration for a perforated plate which has an analytical solution, shows that the presented mathematical programming method results in almost the same as the analytical solution. Nevertheless, increasing the number of design variables to find more smooth shapes in mathematical methods can cause severe programming problems. Comparing the result of this method with that of the optimality criterion indicates that the latter is much easier to apply without any limit on the number of design variables. To calculate stresses at every iteration, the boundary element method (BEM) is used. Therefore both algorithms benefit from a simple mesh generation based on equal length elements, which provides the possibility of solving multiply-connected domains or geometrically complicated mechanical components. Both methods are used to find the optimum shape of a circular plate under radial loading with four design holes. Finally, the problem of the best topology and shape of circular disks is solved by the optimality criterion approach. Also it is proposed that 'a fully stressed design algorithm which starts from the best topology design, has the best shape for weight optimisation. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [1] Shape Optimisation of Assembled Plate Structures with the Boundary Element Method
    Morse, Llewellyn
    Mallardo, Vincenzo
    Sharif-Khodaei, Zahra
    Aliabadi, Ferri M. H.
    AEROSPACE, 2022, 9 (07)
  • [2] A NEW BOUNDARY ELEMENT/MATHEMATICAL PROGRAMMING METHOD FOR CONTACT PROBLEMS WITH FRICTION
    ZHU, CM
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (08): : 683 - 690
  • [3] A boundary element-mathematical programming method for solving elastoplastic problems
    Faraji, A
    Gakwaya, A
    Cardou, A
    BOUNDARY ELEMENTS XXV, 2003, 18 : 93 - 102
  • [4] Mathematical programming approaches for downstream processing optimisation of biopharmaceuticals
    Liu, Songsong
    Simaria, Ana S.
    Farid, Suzanne S.
    Papageorgiou, Lazaros G.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2015, 94 : 18 - 31
  • [5] A boundary element-mathematical programming method for solving elastoplastic contact problems
    Faraji, A
    Cardou, A
    Gakwaya, A
    COMPUTATIONAL METHODS IN CONTACT MECHANICS VI, 2003, 8 : 35 - 45
  • [6] Comparing constraint programming and mathematical programming approaches to discrete optimisation - the change problem
    Heipcke, S
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1999, 50 (06) : 581 - 595
  • [7] Turret-index optimisation with mathematical programming and metaheuristic approaches
    Baykasoglu, Adil
    Yoruk, Elif
    Yildiz, Seyda Topaloglu
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2025, 63 (06) : 2248 - 2267
  • [8] Mathematical Programming and Solution Approaches for Transportation Optimisation in Supply Network
    Szkutnik-Rogoz, Joanna
    Ziolkowski, Jaroslaw
    Malachowski, Jerzy
    Oszczypala, Mateusz
    ENERGIES, 2021, 14 (21)
  • [9] Boundary element based multiresolution shape optimisation in electrostatics
    Bandara, Kosala
    Cirak, Fehmi
    Of, Guenther
    Steinbach, Olaf
    Zapletal, Jan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 : 584 - 598
  • [10] A COMPARISON OF THE SEMIDISCONTINUOUS ELEMENT AND MULTIPLE NODE WITH AUXILIARY BOUNDARY COLLOCATION APPROACHES FOR THE BOUNDARY-ELEMENT METHOD
    SUBIA, SR
    INGBER, MS
    MITRA, AK
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1995, 15 (01) : 19 - 27