Global stability of solutions to a free boundary problem of ductal carcinoma in situ
被引:0
|
作者:
Xu, Shihe
论文数: 0引用数: 0
h-index: 0
机构:
Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Guangdong, Peoples R ChinaZhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Guangdong, Peoples R China
Xu, Shihe
[1
]
机构:
[1] Zhaoqing Univ, Sch Math & Stat, Zhaoqing 526061, Guangdong, Peoples R China
Mathematical model;
Ductal carcinoma in situ;
Free boundary problem;
Global stability;
SOLID TUMOR-GROWTH;
TIME DELAYS;
MATHEMATICAL-MODELS;
ABSENCE;
D O I:
10.1016/j.nonrwa.2015.08.003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the paper we present some remarks on the global stability of steady state solutions to a free boundary model studied by Xu (2004) and also prove some new results of global stability of steady state solutions to the model. (C) 2015 Elsevier Ltd. All rights reserved.
机构:
Shanghai Univ Finance & Econ, Sch Math, Shanghai, Peoples R China
Hangzhou Med Coll, Sch Med Imaging, Hangzhou, Zhejiang, Peoples R ChinaShanghai Univ Finance & Econ, Sch Math, Shanghai, Peoples R China
Ge, Meibao
Xu, Dinghua
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Sch Math, Shanghai, Peoples R China
Zhejiang Sci Tech Univ, Coll Sci, Dept Math, Hangzhou, Zhejiang, Peoples R ChinaShanghai Univ Finance & Econ, Sch Math, Shanghai, Peoples R China
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
Dipierro, Serena
Karakhanyan, Aram
论文数: 0引用数: 0
h-index: 0
机构:
Univ Edinburgh, Sch Math, Peter Tait Guthrie Rd, Edinburgh EH9 3FD, ScotlandUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
Karakhanyan, Aram
Valdinoci, Enrico
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia