Selection of Basis Functions for Volume-Surface Integral Equation Using Spanning Tree

被引:0
|
作者
Lapovok, Andrew [1 ]
Nizkiy, Roman [1 ]
Shikhov, Ilia [1 ]
Grimalsky, Oleg [2 ]
机构
[1] Krylov State Res Ctr, St Petersburg, Russia
[2] Mil Acad RCBD & Engn Corps, Kostroma, Russia
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Problem of electromagnetic scattering by a system of wires, conductive surfaces and magnitodielectric volumes is solved. It is reduced to solution of volume-surface integral equations (VSIE). For approximation of equivalent electric and magnetic currents basis functions based on Rao-Wilton-Glisson (RWG) and Shaubert-Wilton-Glisson (SWG) functions are used. Integral equations are used in a form which unites formulations for different regions. To ensure linear independence of basis functions and absence of artificial charges inside volume elements the spanning tree of the graph representing topology of the mesh is constructed. Proposed method coupled with multilevel fast multipole algorithm (MLFMA) is applied to scattering on perfectly conducting sphere coated by dielectric layer.
引用
收藏
页码:2138 / 2139
页数:2
相关论文
共 50 条
  • [1] Solution of volume-surface integral equations using higher-order hierarchical Legendre basis functions
    Kim, O. S.
    Meincke, P.
    Breinbjerg, O.
    Jorgensen, E.
    RADIO SCIENCE, 2007, 42 (04)
  • [2] Volume-Surface Integral Equation Solver For Chiral Media
    Olyslager, Paul
    Munger, Cedric
    Rogier, Hendrik
    Cools, Kristof
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 541 - 544
  • [3] A Skeletonization accelerated MLFMA for Volume-Surface Integral Equation
    Yan-Nan, Liu
    Pan, Xiao-Min
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [4] Volume integral equation using solenoidal basis functions
    Fan, Z. H.
    Bao, Jian
    Yung, Edward K. N.
    Chen, R. S.
    2006 7TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY, VOLS 1 AND 2, PROCEEDINGS, 2006, : 1061 - 1064
  • [5] Scattering Analysis Using Generalized Volume-Surface Integral Equation Method of Moments
    Chobanyan, Elene
    Notaros, Branislav M.
    Ilic, Milan M.
    2014 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2014, : 2134 - 2135
  • [6] Volume-Surface Combined Field Integral Equation for Plasma Scatterers
    Gomez, Luis J.
    Yucel, Abdulkadir C.
    Michielssen, Eric
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 1064 - 1067
  • [7] An Efficient Solution of Scattering from Thin Dielectric Structures by Volume-Surface Integral Equation and Simplified Prism Vector Basis Functions
    Li, Xianjin
    Hu, Jun
    Nie, Zaiping
    Wei, Xiao
    Che, Yongxing
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 661 - 664
  • [8] Efficient Matrix Filling for a Volume-Surface Integral Equation Method
    Li, Xianjin
    Hu, Jun
    Chen, Yongpin
    Lei, Lin
    Jiang, Ming
    Rong, Zhi
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 222 - 224
  • [9] Solution of Volume-Surface Integral Equation Accelerated by MLFMA and Skeletonization
    Liu, Yan-Nan
    Pan, Xiao-Min
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) : 6078 - 6083
  • [10] Block Matrix Preconditioner for the Coupled Volume-Surface Integral Equation
    Tao, Shifei
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (08): : 602 - 610