STOCHASTIC CO-KRIGING FOR STEADY-STATE SIMULATION METAMODELING

被引:0
|
作者
Chen, Xi [1 ]
Hemmati, Sahar [2 ]
Yang, Feng [2 ]
机构
[1] Virginia Tech, Ind & Syst Engn, Blacksburg, VA 24061 USA
[2] West Virginia Univ, Ind & Management Syst Engn, Morgantown, WV 26506 USA
来源
2017 WINTER SIMULATION CONFERENCE (WSC) | 2017年
关键词
VARIANCE; OUTPUT;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present the stochastic co-kriging methodology (SCK) for approximating a steady-state mean response surface based on outputs from both long and short simulation replications performed at selected design points. We provide details on how to construct an SCK metamodel, perform parameter estimation, and make prediction via SCK. We demonstrate numerically that SCK holds the promise of providing more accurate prediction results at no additional computational effort by only externally adjusting the simulation runlength and number of independent replications of simulations through the experimental design of the simulation study.
引用
收藏
页码:1750 / 1761
页数:12
相关论文
共 50 条
  • [1] STOCHASTIC KRIGING FOR SIMULATION METAMODELING
    Ankenman, Bruce
    Nelson, Barry L.
    Staum, Jeremy
    2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 362 - 370
  • [2] Stochastic Kriging for Simulation Metamodeling
    Ankenman, Bruce
    Nelson, Barry L.
    Staum, Jeremy
    OPERATIONS RESEARCH, 2010, 58 (02) : 371 - 382
  • [3] QUANTILE SIMULATION OPTIMIZATION WITH STOCHASTIC CO-KRIGING MODEL
    Wang, Songhao
    Ng, Szu Hui
    Haskell, William Benjamin
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 2119 - 2130
  • [4] Stochastic intrinsic Kriging for simulation metamodeling
    Mehdad, Ehsan
    Kleijnen, Jack P. C.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2018, 34 (03) : 322 - 337
  • [5] CO-KRIGING FOR STOCHASTIC FLOW MODELS
    GUTJAHR, A
    WILSON, J
    TRANSPORT IN POROUS MEDIA, 1989, 4 (06) : 585 - 598
  • [6] GAME THEORETIC SIMULATION METAMODELING USING STOCHASTIC KRIGING
    Pousi, Jouni
    Poropudas, Jirka
    Virtanen, Kai
    PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 1456 - 1467
  • [7] STOCHASTIC KRIGING FOR RANDOM SIMULATION METAMODELING WITH FINITE SAMPLING
    Wang, Bo
    Bai, Junqiang
    Gea, Hae Chang
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 3B, 2014,
  • [8] BETTER SIMULATION METAMODELING: THE WHY, WHAT, AND HOW OF STOCHASTIC KRIGING
    Staum, Jeremy
    PROCEEDINGS OF THE 2009 WINTER SIMULATION CONFERENCE (WSC 2009 ), VOL 1-4, 2009, : 119 - 133
  • [9] Steady-state simulation of metastable stochastic chemical systems
    Milias-Argeitis, Andreas
    Lygeros, John
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (18):
  • [10] MATRIX FORMULATION OF CO-KRIGING
    MYERS, DE
    JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1982, 14 (03): : 249 - 257