Brain anatomical structure segmentation by adaptive bandwidth density estimation

被引:0
|
作者
Lopez Palafox, Guadalupe Desiree [1 ]
Jimenez Alaniz, Juan Ramon [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Elect Engn, Neuroimaging Lab, Mexico City 09340, DF, Mexico
关键词
MRI;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Determination of region in a space of multimodal features of brain MR images requires kernel estimation tecniques with bandwidths that are adapted locally. The bandwidth selection is a critical aspect at the filtering stage of image segmentation. This work presents two methods for determinate the adaptive bandwidth in the application of density estimation, in the segmentation of regions at the feature space of an MRI. Two adaptive methods: sample point and k-nearest neighbors, where applied for real and synthetic data, achieved similarity indexes of 0.68 and 0.71 for gray matter and white matter respectively.
引用
收藏
页码:5364 / 5367
页数:4
相关论文
共 50 条
  • [1] Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation
    Zougab, Nabil
    Adjabi, Smail
    Kokonendji, Celestin C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 75 : 28 - 38
  • [2] An adaptive method for bandwidth selection in circular kernel density estimation
    Zamecnik, Stanislav
    Horova, Ivana
    Katina, Stanislav
    Hasilova, Kamila
    COMPUTATIONAL STATISTICS, 2024, 39 (04) : 1709 - 1728
  • [3] An adaptive method for bandwidth selection in circular kernel density estimation
    Stanislav Zámečník
    Ivana Horová
    Stanislav Katina
    Kamila Hasilová
    Computational Statistics, 2024, 39 : 1709 - 1728
  • [4] Brain anatomical structure segmentation by hybrid discriminative/generative models
    Tu, Zhuowen
    Narr, Katherine L.
    Dollar, Piotr
    Dinov, Ivo
    Thompson, Paul M.
    Toga, Arthur W.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) : 495 - 508
  • [5] Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions
    Hu, Shuowen
    Poskitt, D. S.
    Zhang, Xibin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) : 732 - 740
  • [6] On the utility of asymptotic bandwidth selectors for spatially adaptive kernel density estimation
    Davies, Tilman M.
    Flynn, Claire R.
    Hazelton, Martin L.
    STATISTICS & PROBABILITY LETTERS, 2018, 138 : 75 - 81
  • [7] Load Extrapolation Method Based on Adaptive Bandwidth Kernel Density Estimation
    Niu W.
    Cai F.
    Fu J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (01): : 375 - 384
  • [8] Adaptive normal reference bandwidth based on quantile for kernel density estimation
    Zhang, Jin
    JOURNAL OF APPLIED STATISTICS, 2011, 38 (12) : 2869 - 2880
  • [9] DenseNet for Anatomical Brain Segmentation
    Gottapu, Ram Deepak
    Dagli, Cihan H.
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 179 - 185
  • [10] Adaptive bandwidth kernel density estimation for next-generation sequencing data
    Parameswaran Ramachandran
    Theodore J Perkins
    BMC Proceedings, 7 (Suppl 7)