On-line Learning With Reject Option

被引:0
|
作者
Perez, G. J. [1 ]
Santibanez, M. [1 ]
Valdovinos, R. M. [1 ]
Marcial, J. R. [1 ]
Romero, M. [1 ]
Alejo, R. [2 ]
机构
[1] Univ Autonoma Estado Mexico, Fac Ingn, Toluca, Mexico
[2] Inst Tecnol Estudios Super Jocotitlan, Jocotitlan, Mexico
关键词
Preprocessing; On-line Learning; Clustering; Classification; Data Mining;
D O I
10.1109/TLA.2018.8291485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-line learning is a training paradigm that allows the processing of constant data flows, so that learning adapts to new knowledge. However, due to the nature of the study problem, it is possible that in the clustering obtained there are data complexities (outliers, atypical patterns, noisy, etc.) that deteriorate the performance of the model in the classification stage. Due to the above, an alternative to cope data complexities is the use of algorithms that allow to detect reject options to filter noisy pattern. In this research the neighborhood-based reject option is implemented in an on-line learning process, with the intention of improving the clustering quality and thus increasing the precision indexes obtained with the nearest neighbor's rule in the classification stage. Likewise, to validate the quality of the clustering generated, internal and external analysis metrics are used. The experimental results show the viability of the proposal when analyzed on real data.
引用
收藏
页码:279 / 286
页数:8
相关论文
共 50 条
  • [1] Learning with an embedded reject option
    Sundararajan, R
    Pal, AK
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 664 - 669
  • [2] Machine learning with a reject option: a survey
    Kilian Hendrickx
    Lorenzo Perini
    Dries Van der Plas
    Wannes Meert
    Jesse Davis
    Machine Learning, 2024, 113 : 3073 - 3110
  • [3] Machine learning with a reject option: a survey
    Hendrickx, Kilian
    Perini, Lorenzo
    van der Plas, Dries
    Meert, Wannes
    Davis, Jesse
    MACHINE LEARNING, 2024, 113 (05) : 3073 - 3110
  • [4] Interpretable machine learning with reject option
    Brinkrolf, Johannes
    Hammer, Barbara
    AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (04) : 283 - 290
  • [5] Online Active Learning of Reject Option Classifiers
    Shah, Kulin
    Manwani, Naresh
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5652 - 5659
  • [6] Efficient Minimal Learning Machines with Reject Option
    de Oliveira, Adonias C.
    Gomes, Joao Paulo P.
    Rocha Neto, Ajalmar R.
    de Souza Junior, Amauri H.
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 397 - 402
  • [7] Classification with reject option
    Herbei, Radu
    Wegkamp, Marten H.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (04): : 709 - 721
  • [8] A software architecture framework for on-line option pricing
    Kiran Kola
    Ruppa K. Thulasiram
    Parimala Thulasiraman
    The Journal of Supercomputing, 2009, 47 : 146 - 170
  • [9] A software architecture framework for on-line option pricing
    Kola, Kiran
    Chhabra, Amit
    Thulasiram, Ruppa K.
    Thulasiraman, Parimala
    PARALLEL AND DISTRIBUTED PROCESSING AND APPLICATIONS, 2006, 4330 : 747 - +
  • [10] A software architecture framework for on-line option pricing
    Kola, Kiran
    Thulasiram, Ruppa K.
    Thulasiraman, Parimala
    JOURNAL OF SUPERCOMPUTING, 2009, 47 (02): : 146 - 170