The elusive Heisenberg limit in quantum-enhanced metrology

被引:555
|
作者
Demkowicz-Dobrzanski, Rafal [1 ]
Kolodynski, Jan [1 ]
Guta, Madalin [2 ]
机构
[1] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
英国工程与自然科学研究理事会;
关键词
NOISE; STATES; MAPS;
D O I
10.1038/ncomms2067
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum precision enhancement is of fundamental importance for the development of advanced metrological optical experiments, such as gravitational wave detection and frequency calibration with atomic clocks. Precision in these experiments is strongly limited by the 1/root N shot noise factor with N being the number of probes ( photons, atoms) employed in the experiment. Quantum theory provides tools to overcome the bound by using entangled probes. In an idealized scenario this gives rise to the Heisenberg scaling of precision 1/N. Here we show that when decoherence is taken into account, the maximal possible quantum enhancement in the asymptotic limit of infinite N amounts generically to a constant factor rather than quadratic improvement. We provide efficient and intuitive tools for deriving the bounds based on the geometry of quantum channels and semi-definite programming. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: depolarization, dephasing, spontaneous emission and photon loss.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The elusive Heisenberg limit in quantum-enhanced metrology
    Rafał Demkowicz-Dobrzański
    Jan Kołodyński
    Mădălin Guţă
    Nature Communications, 3
  • [2] Entanglement-enhanced quantum metrology: From standard quantum limit to Heisenberg limit
    Huang, Jiahao
    Zhuang, Min
    Lee, Chaohong
    APPLIED PHYSICS REVIEWS, 2024, 11 (03):
  • [3] Quantum-Enhanced Metrology with Network States
    Yang, Yuxiang
    Yadin, Benjamin
    Xu, Zhen-Peng
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [4] Quantum-enhanced metrology in cavity magnonics
    Wan, Qing-Kun
    Shi, Hai-Long
    Guan, Xi-Wen
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [5] General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology
    Escher, B. M.
    de Matos Filho, R. L.
    Davidovich, L.
    NATURE PHYSICS, 2011, 7 (05) : 406 - 411
  • [6] Quantum-enhanced metrology with large Fock states
    Deng, Xiaowei
    Li, Sai
    Chen, Zi-Jie
    Ni, Zhongchu
    Cai, Yanyan
    Mai, Jiasheng
    Zhang, Libo
    Zheng, Pan
    Yu, Haifeng
    Zou, Chang-Ling
    Liu, Song
    Yan, Fei
    Xu, Yuan
    Yu, Dapeng
    NATURE PHYSICS, 2024, 20 (12) : 1874 - 1880
  • [7] General Optimality of the Heisenberg Limit for Quantum Metrology
    Zwierz, Marcin
    Perez-Delgado, Carlos A.
    Kok, Pieter
    PHYSICAL REVIEW LETTERS, 2010, 105 (18)
  • [8] Quantum metrology: Heisenberg limit with bound entanglement
    Czekaj, L.
    Przysiezna, A.
    Horodecki, M.
    Horodecki, P.
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [9] Quantum-enhanced metrology for multiple phase estimation with noise
    Yue J.-D.
    Zhang Y.-R.
    Fan H.
    Scientific Reports, 4 (1)
  • [10] Hybridization: A route to state engineering for quantum-enhanced metrology
    Munro, William J.
    Dooley, Shane
    Yukawa, Emi
    Matsuzaki, Yuichiro
    Nemoto, Kae
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,