Evaluation of natural gas combined cycle power plant for post-combustion CO2 capture integration

被引:97
|
作者
Biliyok, Chechet [1 ]
Yeung, Hoi [1 ]
机构
[1] Cranfield Univ, Sch Engn, Proc Syst Engn Grp, Cranfield MK43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
Modelling; NGCC; CCGT; Post-combustion; Exhaust gas recirculation; CARBON-DIOXIDE; ABSORPTION; KINETICS; NGCC;
D O I
10.1016/j.ijggc.2013.10.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Over the coming decade, gas-fired power plants are projected to account for a substantial share of global output. CO2 capture would be required to mitigate the associated emissions. Thus, high fidelity models of a 440 MW natural gas combined cycle power plant, a CO2 capture plant and a CO2 compression train were built and integrated for 90% capture level. Power output is observed to fall by 15%, while cooling water demand increases by 33%. A 40% exhaust gas recirculation (EGR) causes a 10 MW power recovery, but increases cooling water demand further. It is shown that higher exhaust gas CO2 concentration enhances mass transfer in the capture plant, which reduces its steam requirement. Supplementary firing (SF) of the exhaust gas is observed to generally improve the plant output. Economic analysis, performed via a bottom-up approach, reveals integrated plant overnight cost to be 58% higher than the power plant cost, discouraging deployment of CO2 capture. The impact of EGR is marginal, while SF implementation almost doubles the overnight cost. Cost of electricity increases by 30% for the integrated plant, but only by 26% with EGR, and 24% with SF. However, the price of gas remains the largest contributor to cost of electricity. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 405
页数:10
相关论文
共 50 条
  • [1] Heat integration of natural gas combined cycle power plant integrated with post-combustion CO2 capture and compression
    Luo, Xiaobo
    Wang, Meihong
    Chen, Jian
    FUEL, 2015, 151 : 110 - 117
  • [2] Investigation of Alternative Strategies for Integrating Post-combustion CO2 Capture to a Natural Gas Combined Cycle Power Plant
    Biliyok, Chechet
    Canepa, Roberto
    Hanak, Dawid P.
    ENERGY & FUELS, 2015, 29 (07) : 4624 - 4633
  • [3] Reduction of efficiency penalty for a natural gas combined cycle power plant with post-combustion CO2 capture: Integration of liquid natural gas cold energy
    Bao, Junjiang
    Zhang, Lei
    Song, Chunxiao
    Zhang, Ning
    Guo, Minggang
    Zhang, Xiaopeng
    ENERGY CONVERSION AND MANAGEMENT, 2019, 198
  • [4] Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption
    Jiang, L.
    Gonzalez-Diaz, A.
    Ling-Chin, J.
    Roskilly, A. P.
    Smallbone, A. J.
    APPLIED ENERGY, 2019, 245 : 1 - 15
  • [5] Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle) power plants
    Lindqvist, Karl
    Jordal, Kristin
    Haugen, Geir
    Hoff, Karl Anders
    Anantharaman, Rahul
    ENERGY, 2014, 78 : 758 - 767
  • [6] Thermodynamic analysis and techno-economic evaluation of an integrated natural gas combined cycle (NGCC) power plant with post-combustion CO2 capture
    Hu, Yue
    Xu, Gang
    Xu, Cheng
    Yang, Yongping
    APPLIED THERMAL ENGINEERING, 2017, 111 : 308 - 316
  • [7] Thermodynamic analysis of combined cycle gas turbine power plant with post-combustion CO2 capture and exhaust gas recirculation
    Canepa, Roberto
    Wang, Meihong
    Biliyok, Chechet
    Satta, Antonio
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2013, 227 (E2) : 89 - 105
  • [8] Operating flexibility of natural gas combined cycle power plant integrated with post-combustion capture
    Spitz, Thomas
    Gonzalez Diaz, Abigail
    Chalmers, Hannah
    Lucquiaud, Mathieu
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 88 : 92 - 108
  • [9] Evaluation of CO2 Post Combustion Capture Integration with Combined Cycle Power and Desalination Co-generation Plant
    Fadeyi, Stephen
    Ustadi, Iman
    Fath, Hassan
    Abu-Zahra, Mohammad R. M.
    GHGT-11, 2013, 37 : 2595 - 2601
  • [10] Capture level design for a natural gas combined cycle with post-combustion CO2 capture using novel configurations
    Diaz-Herrera, Pablo R.
    Alcaraz-Calderon, Agustin M.
    Gonzalez-Diaz, Maria Ortencia
    Gonzalez-Diaz, Abigail
    ENERGY, 2020, 193 : 637 - 655