A BIFURCATION FOR A GENERALIZED BURGERS' EQUATION IN DIMENSION ONE

被引:0
|
作者
Rault, Jean-Francois [1 ]
机构
[1] Univ Lille Nord France, CNRS, LMPA Joseph Liouville ULCO FR 2956, F-62228 Calais, France
关键词
Bifurcation; Existence of solution; Blow-up; Phase plane;
D O I
10.3934/dcdss.2012.5.683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the generalized Burgers' equation GRAPHICS with p > 1, lambda is an element of R, Omega a subdomain of R, and where B(u) = 0 denotes some boundary conditions. First, using some phase plane arguments, we study the existence of stationary solutions under the Dirichlet or the Neumann boundary conditions and prove a bifurcation depending on the parameter lambda. Then, we compare positive solutions of the parabolic equation with appropriate stationary solutions to prove that global existence can occur when B(u) = 0 stands for the Dirichlet, the Neumann or the dissipative dynamical boundary conditions sigma partial derivative(t)u + partial derivative(V)u = 0. Finally, for many boundary conditions, global existence and blow up phenomena for solutions of the nonlinear parabolic problem in an unbounded domain Omega are investigated by using some standard super-solutions and some weighted L-1 norms.
引用
收藏
页码:683 / 706
页数:24
相关论文
共 50 条
  • [1] On the generalized Burgers equation
    Tersenov, Alkis S.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (04): : 437 - 452
  • [2] On the generalized Burgers equation
    Alkis S. Tersenov
    Nonlinear Differential Equations and Applications NoDEA, 2010, 17 : 437 - 452
  • [3] Solution and transcritical bifurcation of Burgers equation
    Tang Jia-Shi
    Zhao Ming-Hua
    Han Feng
    Zhang Liang
    CHINESE PHYSICS B, 2011, 20 (02)
  • [4] Solution and transcritical bifurcation of Burgers equation
    唐驾时
    赵明华
    韩峰
    张良
    Chinese Physics B, 2011, (02) : 114 - 117
  • [5] Generalized Burgers Equations Transformable to the Burgers Equation
    Vaganan, B. Mayil
    Jeyalakshmi, T.
    STUDIES IN APPLIED MATHEMATICS, 2011, 127 (03) : 211 - 220
  • [6] On the Cauchy problem for one dimension generalized Boussinesq equation
    Wang, Yinxia
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (03)
  • [7] On Generalized Nonlinear Burgers' Equation
    Bokhari, Ashfaque H.
    Kara, A. H.
    Abdulwahab, M.
    Zaman, F. D.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (03): : 281 - 289
  • [8] Bifurcation analysis to the Lugiato-Lefever equation in one space dimension
    Miyaji, T.
    Ohnishi, I.
    Tsutsumi, Y.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (23-24) : 2066 - 2083
  • [9] Bifurcation analysis of the Kuramoto-Sivashinsky equation in one spatial dimension
    Li, CP
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (09): : 2493 - 2499
  • [10] BIFURCATION OF SOLUTIONS TO THE CONTROLLED BURGERS-EQUATION
    PERALTAFABI, R
    PLASCHKO, P
    ACTA MECHANICA, 1993, 96 (1-4) : 155 - 161