Real-time 3D and 4D Fourier domain Doppler optical coherence tomography based on dual graphics processing units

被引:44
|
作者
Huang, Yong [1 ]
Liu, Xuan [1 ]
Kang, Jin U. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2012年 / 3卷 / 09期
关键词
ANGIOGRAPHY; MICROVASCULATURE;
D O I
10.1364/BOE.3.002162
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present real-time 3D (2D cross-sectional image plus time) and 4D (3D volume plus time) phase-resolved Doppler OCT (PRDOCT) imaging based on configuration of dual graphics processing units (GPU). A GPU-accelerated phase-resolving processing algorithm was developed and implemented. We combined a structural image intensity-based thresholding mask and average window method to improve the signal-to-noise ratio of the Doppler phase image. A 2D simultaneous display of the structure and Doppler flow images was presented at a frame rate of 70 fps with an image size of 1000 x 1024 (X x Z) pixels. A 3D volume rendering of tissue structure and flow images-each with a size of 512 x 512 pixels-was presented 64.9 milliseconds after every volume scanning cycle with a volume size of 500 x 256 x 512 (X x Y x Z) voxels, with an acquisition time window of only 3.7 seconds. To the best of our knowledge, this is the first time that an online, simultaneous structure and Doppler flow volume visualization has been achieved. Maximum system processing speed was measured to be 249,000 A-scans per second with each A-scan size of 2048 pixels. (c) 2012 Optical Society of America
引用
收藏
页码:2162 / 2174
页数:13
相关论文
共 50 条
  • [1] Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit
    Van der Jeught, Sam
    Bradu, Adrian
    Podoleanu, Adrian Gh
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (03)
  • [2] Real-time 3D Fourier-domain optical coherence tomography guided microvascular anastomosis
    Huang, Yong
    Ibrahim, Zuhaib
    Lee, W. P. Andree
    Brandacher, Gerald
    Kang, Jin U.
    MEDICAL IMAGING 2013: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2013, 8671
  • [3] Graphics Processing Unit-Based Ultrahigh Speed Real-Time Fourier Domain Optical Coherence Tomography
    Zhang, Kang
    Kang, Jin U.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (04) : 1270 - 1279
  • [4] Graphics processing unit based ultrahigh speed real-time multidimensional Fourier domain optical coherence tomography
    Zhang, Kang
    Kang, Jin U.
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XVI, 2012, 8213
  • [5] Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit
    Watanabe, Yuuki
    Itagaki, Toshiki
    JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (06)
  • [6] Real time 3D structural and Doppler OCT imaging on graphics processing units
    Sylwestrzak, Marcin
    Szlag, Daniel
    Szkulmowski, Maciej
    Gorczynska, Iwona
    Bukowska, Danuta
    Wojtkowski, Maciej
    Targowski, Piotr
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XVII, 2013, 8571
  • [7] Real-time visualization of 4D cardiac MR images using graphics processing units
    Zhang, Qi
    Eagleson, Roy
    Peters, Terry M.
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 343 - +
  • [8] Real-time massively parallel processing of Spectral Optical Coherence Tomography data on Graphics Processing Units
    Sylwestrzak, Marcin
    Szlag, Daniel
    Szkulmowski, Maciej
    Targowski, Piotr
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE TECHNIQUES V, 2011, 8091
  • [9] Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography
    Zhang, K.
    Kang, J. U.
    ELECTRONICS LETTERS, 2011, 47 (05) : 309 - U32
  • [10] Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography
    Schaefer, AW
    Reynolds, JJ
    Marks, DL
    Boppart, SA
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (01) : 186 - 190